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Abstract

The vision about a number theoretic formulation of quantum TGD is based on the gradual
accumulation of wisdom coming from different sources. The attempts to find a formulation
allowing to understand real and p-adic physics as aspects of some more general scenario have
been an important stimulus and generated a lot of, not necessarily mutually consistent ideas,
some of which might serve as building blocks of the final formulation.

The first part of the 3-part chapter is devoted to the p-adicization program attempting to
construct physics in various number fields as an algebraic continuation of physics in the field
of rationals (or appropriate extension of rationals). The program involves in essential manner
the generalization of number concept obtained by fusing reals and p-adic number fields to a
larger structure by gluing them together along common rationals. Highly non-trivial number
theoretic conjectures are an i outcome of the program.

1. Real and p-adic regions of the space-time as geometric correlates of matter and mind

The solutions of the equations determining space-time surfaces are restricted by the re-
quirement that the imbedding space coordinates are real. When this is not the case, one might
apply instead of a real completion with some rational-adic or p-adic completion: this is how
rational-adic p-adic physics could emerge from the basic equations of the theory. One could
interpret the resulting rational-adic or p-adic regions as geometrical correlates for ’mind stuff’.

p-Adic non-determinism implies extreme flexibility and therefore makes the identification of
the p-adic regions as seats of cognitive representations very natural. Unlike real completion,
p-adic completions preserve the information about the algebraic extension of rationals and
algebraic coding of quantum numbers must be associated with ’mind like’ regions of space-
time. p-Adics and reals are in the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of conscious-
ness: p-adic regions are present even at elementary particle level and provide some kind of
model of ’self’ and external world. In fact, p-adic physics must model the p-adic cognitive
regions representing real elementary particle regions rather than elementary particles them-
selves!

2. The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and inten-
tionality leads to the generalization of the notion of number field. Reals and various p-adic
number fields are glued along their common rationals (and common algebraic numbers too)
to form a fractal book like structure. Allowing all possible finite-dimensional extensions of
p-adic numbers brings additional pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time
surface to real and p-adic space-time sheets. This has deep implications for the view about
cognition. For instance, two points infinitesimally near p-adically are infinitely distant in real
sense so that cognition becomes a cosmic phenomenon.

3. p-Adicization by algebraic continuation

One general idea which results as an outcome of the generalized notion of number is the
idea of a universal function continuable from a function mapping rationals to rationals or to
a finite extension of rationals to a function in any number field. This algebraic continuation
is analogous to the analytical continuation of a real analytic function to the complex plane.
Rational functions with rational coefficients are obviously functions satisfying this constraint.
Algebraic functions with rational coefficients satisfy this requirement if appropriate finite-
dimensional algebraic extensions of p-adic numbers are allowed. Exponent function is such a
function.

For instance, residue calculus might be generalized so that the value of an integral along
the real axis could be calculated by continuing it instead of the complex plane to any number
field via its values in the subset of rational numbers forming the rim of the book like structure
having number fields as its pages. If the poles of the continued function in the finitely extended
number field allow interpretation as real numbers it might be possible to generalize the residue
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formula. One can also imagine of extending residue calculus to any algebraic extension. An
interesting situation arises when the poles correspond to extended p-adic rationals common to
different pages of the ”great book”. Could this mean that the integral could be calculated at
any page having the pole common. In particular, could a p-adic residue integral be calculated
in the ordinary complex plane by utilizing the fact that in this case numerical approach makes
sense.

Algebraic continuation is the basic tool of p-adicization program. Entire physics of the
TGD Universe should be algebraically continuable to various number fields. Real number
based physics would define the physics of matter and p-adic physics would describe correlates
of cognition and intentionality. The basic stumbling block of this program is integration
and algebraic continuation should allow to circumvent this difficulty. Needless to say, the
requirement that the continuation exists must pose immensely tight constraints on the physics.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and
infrared cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of
different physical phases on one hand and different levels of cognition on the other hand. Two
types of cutoffs are predicted: p-adic length scale cutoff and a cutoff due to phase resolution.
The latter cutoff seems to correspond naturally to the hierarchy of algebraic extensions of p-
adic numbers and Beraha numbers Bn = 4cos2(π/n), n ≥ 3 related closely to the hierarchy of
quantum groups, braid groups, and II1 factors of von Neumann algebra. This cutoff hierarchy
seems to relate closely to the hierarchy of cutoffs defined by the hierarchy of subalgebras of
the super-canonical algebra defined by the hierarchy of sets (z1, ...zn), where zi are the first n
non-trivial zeros of Riemann Zeta. Hence there are good hopes that the p-adicization program
might unify apparently unrelated branches of mathematics.

4. Number theoretic democracy

The interpretation allows all finite-dimensional extensions of p-adic number fields and even
infinite-P p-adics. The notion arithmetic quantum theory generalizes to include Gaussian and
Eisenstein variants of infinite primes and corresponding arithmetic quantum field theories.
Also the notion of p-adicity generalizes: it seems that one can indeed assign to Gaussian and
Eisenstein primes what might be called G-adic and E-adic numbers. These number fields
seem to be tailor made for modelling logarithmic spirals which represent the basic fractal like
structures in a living matter and excitable media.

p-Adicization by algebraic continuation gives hopes of continuing quantum TGD from reals
to various p-adic number fields. The existence of this continuation poses extremely strong
constraints on theory and has already now inspired several number theoretic conjectures.

1 Introduction

The vision about a number theoretic formulation of quantum TGD is based on the gradual accu-
mulation of wisdom coming from different sources. The attempts to find a formulation allowing to
understand real and p-adic physics as aspects of some more general scenario have been an impor-
tant stimulus and generated a lot of, not necessarily mutually consistent ideas, some of which might
serve as building blocks of the final formulation. The original chapter representing the number
theoretic vision as a consistent narrative grew so massive that I decided to divide it to three parts.

The first part is devoted to the p-adicization program attempting to construct physics in various
number fields as an algebraic continuation of physics in the field of rationals (or appropriate
extension of rationals). The program involves in essential manner the generalization of number
concept obtained by fusing reals and p-adic number fields to a larger structure by gluing them
together along common rationals. Highly non-trivial number theoretic conjectures are an i outcome
of the program.

Second part focuses on the idea that the tangent spaces of space-time and imbedding space
can be regarded as 4- resp. 8-dimensional algebras such that space-time tangent space defines sub-
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algebra of imbedding space. The basic candidates for the pair of algebras are hyper-quaternions
and hyper-octonions.

The great idea is that space-time surfaces X4 correspond to hyper-quaternionic or co-hyper-
quaternionic sub-manifolds of HO = M8. The possibility to assign to X4 a surface in M4 × CP2

means a number theoretic analog for spontaneous compactification. Of course, nothing dynamical
is involved: a dual relation between totally different descriptions of the physical world are in
question. In the spirit of generalized algebraic geometry one can ask whether hyper-quaternionic
space-time surfaces and their duals could be somehow assigned to hyper-octonion analytic maps
HO → HO, and there are good arguments suggesting that this is the case.

The third part is devoted to infinite primes. Infinite primes are in one-one correspondence with
the states of super-symmetric arithmetic quantum field theories. The infinite-primes associated
with hyper-quaternionic and hyper-octonionic numbers are the most natural ones physically be-
cause of the underlying Lorentz invariance, and the possibility to interpret them as momenta with
mass squared equal to prime. Most importantly, the polynomials associated with hyper-octonionic
infinite primes have automatically space-time surfaces as representatives so that space-time geom-
etry becomes a representative for the quantum states.

1.1 The painting is the landscape

The work with TGD inspired theory of consciousness has led to a vision about the relationship of
mathematics and physics. Physics is not in this view a model of reality but objective reality itself:
painting is the landscape. One can also equate mathematics and physics in a well defined sense
and the often implicitly assumed Cartesian theory-world division disappears. Physical realities
are mathematical ideas represented by configuration space spinor fields (quantum histories) and
quantum jumps between quantum histories give rise to consciousness and to the subjective existence
of mathematician.

The concrete realization for the notion algebraic hologram based on the notion of infinite prime
is a second new element. The notion of infinite rationals leads to the generalization of also the
notion of finite number since infinite-dimensional space of real units obtained from finite rational
valued ratios q of infinite integers divided by q. These units are not units in p-adic sense. The
generalization to the quaternionic and octonionic context means that ordinary space-time points
become infinitely structured and space-time point is able to represent even the quantum physical
state of the Universe in its algebraic structure. Single space-time point becomes the Platonia not
visible at the level of real physics but essential for mathematical cognition.

In this view evolution becomes also evolution of mathematical structures, which become more
and more self-conscious quantum jump by quantum jump. The notion of p-adic evolution is
indeed a basic prediction of quantum TGD but even this vision might be generalized by allowing
rational-adic topologies for which topology is defined by a ring with unit rather than number field.

1.2 Real and p-adic regions of the space-time as geometric correlates of
matter and mind

The solutions of the equations determining space-time surfaces are restricted by the requirement
that the components of quaternions are real. When this is not the case, one might apply instead
of a real completion with some rational-adic or p-adic completion: this is how rational-adic p-adic
physics emerges from basic equations of the theory. One can interpret the resulting rational-adic
or p-adic regions as geometrical correlates for ’mind stuff’.

p-Adic non-determinism implies extreme flexibility and therefore makes the identification of
the p-adic regions as seats of cognitive representations very natural. Unlike real completion, p-
adic completions preserve the information about the algebraic extension of rationals and algebraic
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coding of quantum numbers must be associated with ’mind like’ regions of space-time. p-Adics
and reals are in the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness:
p-adic regions are present even at elementary particle level and provide some kind of model of ’self’
and external world. In fact, p-adic physics must model the p-adic cognitive regions representing
real elementary particle regions rather than elementary particles themselves!

1.3 The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal
book like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings
additional pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time sur-
face to real and p-adic space-time sheets. This has deep implications for the view about cognition.
For instance, two points infinitesimally near p-adically are infinitely distant in real sense so that
cognition becomes a cosmic phenomenon.

1.4 Zero energy ontology, cognition, and intentionality

One could argue that conservation laws forbid p-adic-real phase transitions in practice so that
cognitions (intentions) realized as real-to-padic (p-adic-to-real) transitions would not be possible.
The situation changes if one accepts what might be called zero energy ontology [C1, C2].

1.4.1 Zero energy ontology classically

In TGD inspired cosmology [D5] the imbeddings of Robertson-Walker cosmologies are vacuum ex-
tremals. Same applies to the imbeddings of Reissner-Nordström solution [D3] and in practice to all
solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since four-momentum
currents define a collection of vector fields rather than a tensor in TGD, both positive and negative
signs for energy corresponding to two possible assignments of the arrow of the geometric time to a
given space-time surface are possible. This leads to the view that all physical states have vanishing
net energy classically and that physically acceptable universes are creatable from vacuum.

The result is highly desirable since one can avoid unpleasant questions such as ”What are
the net values of conserved quantities like rest mass, baryon number, lepton number, and electric
charge for the entire universe?”, ”What were the initial conditions in the big bang?”, ”If only
single solution of field equations is selected, isn’t the notion of physical theory meaningless since in
principle it is not possible to compare solutions of the theory?”. This picture fits also nicely with
the view that entire universe understood as quantum counterpart 4-D space-time is recreated in
each quantum jump and allows to understand evolution as a process of continual re-creation.

1.4.2 Zero energy ontology at quantum level

Also the construction of S-matrix [C2] leads to the conclusion that all physical states possess van-
ishing conserved quantum numbers. Furthermore, the entanglement coefficients between positive
and negative energy components of the state define a unitary S-matrix. S-matrix thus becomes
a property of the zero energy state and physical states code by their structure what is usually
identified as quantum dynamics.

Also the transitions between zero energy states are possible but general arguments lead to the
conclusion that the corresponding S-matrix is almost trivial. This finding, which actually forced
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the new view about S-matrix, is highly desirable since it explains why positive energy ontology
works so well if one forgets effects related to intentional action.

At space-time level this would mean that positive energy component and negative energy
component are at a temporal distance characterized by an appropriate p-adic time scale and the
integer characterizing the value of Planck constant for the state in question. The scale in question
would also characterize the geometric duration of quantum jump and the size scale of space-time
region contributing to the contents of conscious experience. The interpretation in terms of a mini
bang followed by a mini crunch suggests itself also.

1.4.3 Hyper-finite factors of type II1 and new view about S-matrix

The representation of S-matrix as unitary entanglement coefficients would not make sense in or-
dinary quantum theory but in TGD the von Neumann algebra in question is not a type I factor
as for quantum mechanics or a type III factor as for quantum field theories, but what is called
hyper-finite factor of type II1 [C6]. This algebra is an infinite-dimensional algebra with the almost
defining, and at the first look very strange, property that the infinite-dimensional unit matrix has
unit trace. The infinite dimensional Clifford algebra spanned by the configuration space gamma
matrices (configuration space understood as the space of 3-surfaces, the ”world of classical worlds”)
is indeed very naturally algebra of this kind since infinite-dimensional Clifford algebras provide a
canonical representations for hyper-finite factors of type II1.

1.4.4 The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic
assumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [C6]. N characterizes measurement
resolution and quantum measurement reduces the entanglement in the non-commutative quantum
spaceM/N . The outcome of the quantum measurement is still represented by a unitary S-matrix
but in the space characterized by N . It is not possible to end up with a pure state with a finite
sequence of quantum measurements.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with
a state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of
the above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure.
The quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite
sequence of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras
expresses this fractal character algebraically. Thus one can hope that the S-matrix appearing as
entanglement coefficients is more or less universal in the same manner as Mandelbrot fractal looks
more or less the same in all length scales and for all resolutions. Whether this kind of univer-
sality must be posed as an additional condition on entanglement coefficients or is an automatic
consequence of unitarity in type II1 sense is an open question.

1.4.5 The S-matrix for p-adic-real transitions makes sense

In zero energy ontology conservation laws do not forbid p-adic-real transitions and one can develop
a relatively concrete vision about what happens in these kind of transitions. The starting point
is the generalization of the number concept obtained by gluing p-adic number fields and real
numbers along common rationals (expressing it very roughly). At the level of the imbedding space
this means that p-adic and real space-time sheets intersect only along common rational points of
the imbedding space and transcendental p-adic space-time points are infinite as real numbers so
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that they can be said to be infinite distant points so that intentionality and cognition become
cosmic phenomena.

In this framework the long range correlations characterizing p-adic fractality can be interpreted
as being due to a large number of common rational points of imbedding space for real space-
time sheet and p-adic space-time sheet from which it resulted in the realization of intention in
quantum jump. Thus real physics would carry direct signatures about the presence of intentionality.
Intentional behavior is indeed characterized by short range randomness and long range correlations.

One can even develop a general vision about how to construct the S-matrix elements charac-
terizing the process [C2]. The basic guideline is the vision that real and various p-adic physics as
well as their hybrids are continuable from the rational physics. This means that these S-matrix
elements must be characterizable using data at rational points of the imbedding space shared by
p-adic and real space-time sheets so that more or less same formulas describe all these S-matrix
elements. Note that also p1 → p2 p-adic transitions are possible.

1.5 p-Adicization by algebraic continuation

One general idea which results as an outcome of the generalized notion of number is the idea
of a universal function continuable from a function mapping rationals to rationals or to a finite
extension of rationals to a function in any number field. This algebraic continuation is analogous
to the analytical continuation of a real analytic function to the complex plane. Rational functions
with rational coefficients are obviously functions satisfying this constraint. Algebraic functions with
rational coefficients satisfy this requirement if appropriate finite-dimensional algebraic extensions
of p-adic numbers are allowed. Exponent function is such a function.

For instance, residue calculus might be generalized so that the value of an integral along the
real axis could be calculated by continuing it instead of the complex plane to any number field
via its values in the subset of rational numbers forming the rim of the book like structure having
number fields as its pages. If the poles of the continued function in the finitely extended number
field allow interpretation as real numbers it might be possible to generalize the residue formula.
One can also imagine of extending residue calculus to any algebraic extension. An interesting
situation arises when the poles correspond to extended p-adic rationals common to different pages
of the ”great book”. Could this mean that the integral could be calculated at any page having the
pole common. In particular, could a p-adic residue integral be calculated in the ordinary complex
plane by utilizing the fact that in this case numerical approach makes sense.

Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based physics
would define the physics of matter and p-adic physics would describe correlates of cognition and
intentionality. The basic stumbling block of this program is integration and algebraic continuation
should allow to circumvent this difficulty. Needless to say, the requirement that the continuation
exists must pose immensely tight constraints on the physics.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and
infrared cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of
different physical phases on one hand and different levels of cognition on the other hand. Two types
of cutoffs are predicted: p-adic length scale cutoff and a cutoff due to phase resolution. The latter
cutoff seems to correspond naturally to the hierarchy of algebraic extensions of p-adic numbers and
Beraha numbers Bn = 4cos2(π/n), n ≥ 3 related closely to the hierarchy of quantum groups, braid
groups, and II1 factors of von Neumann algebra [E10]. This cutoff hierarchy seems to relate closely
to the hierarchy of cutoffs defined by the hierarchy of subalgebras of the super-canonical algebra
defined by the hierarchy of sets (z1, ...zn), where zi are the first n non-trivial zeros of Riemann
Zeta [C5]. Hence there are good hopes that the p-adicization program might unify apparently
unrelated branches of mathematics.
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2 How p-adic numbers emerge from algebraic physics?

The new algebraic vision leads to several generalization of the p-adic philosophy. Besides p-adic
topologies more general rational-adic topologies are possible. Topology is purely dynamically
determined and -adic topologies are quite ’real’. There is a physics oriented review article by
Brekke and Freund [27]. The books of Gouvêa and Khrennikov give more mathematics-oriented
views about p-adics [28, 26].

This section is written before the discovery that it is possible to generalize the notion of the
number field by the fusion reals and various p-adic numbers fields and their extensions together
along common rationals (and also common algebraic numbers) to form a book like structure.
The interpretation of p-adic physics as physics of intention and cognition removes interpretational
problems. This vision provides immediately an answer to many questions raised in the text. In
particular, it leads naturally to a complete algebraic democracy. The introduction of infinite
primes, which are discussed in next chapter, extends the algebraic democracy even further and
gives hopes of describing mathematically also mathematical cognition.

2.1 Basic ideas and questions

It is good to list the basic ideas and pose the basic question before more detailed considerations.

2.1.1 Topology is dynamical

The dynamical emergence of p-adicity is strongly supported both by the applications of p-adic and
algebraic physics. The solutions of polynomial equations involving more than one variable involve
roots of polynomials. Only roots in the real algebraic extensions of rationals are allowed since the
components of quaternions must be real numbers. When the root is complex in real topology, one
can however introduce p-adic topology such that the root exists as a number in a real extension
of p-adics. In p-adic context only a finite-dimensional algebraic extension of rational numbers is
needed. The solutions of the derivative conditions guaranteing Lagrange manifold property involve
p-adic pseudo constants so that the p-adic solutions are non-deterministic. The interpretation is
that real roots of polynomials correspond to geometric correlates of matter whereas p-adic regions
are geometric correlates of mind in consistency with the p-adic non-determinism.

Does this picture imply the physically attractive working hypothesis stating that the decompo-
sition of infinite prime into primes of lower level corresponds to a decomposition of the space-time
surface to various p-adic regions appearing in the definition of the infinite prime? Generating infi-
nite primes correspond to quaternionic rationals and these rationals contain powers of quaternionic
primes defining the infinite prime. The convergence of the power series solution of the polynomial
equations defining space-time surface might depend crucially on the norms of these rationals in
the p-adic topology used. This could actually force in a given space-time region p-adic topology
associated with some prime involved in the expansion. This is in complete accordance with the
idea that p-adic topologies are topologies of sensory experience and real topology is the topology
of reality.

2.1.2 Various generalizations of p-adic topologies

p-Adicized quaternions is not a number field anymore. One could allow also rational-adic extensions
[26] for which pinary expansions are replaced by expansions in powers of rational. These extensions
give rise to rings with unit but not to number fields. In this appoach p-adic, or more generally
rational-adic, topology determined by the algebraic number field on a given space-time sheet would
be absolutely ’real’ rather than mere effective topology. Space-time surface decomposes into regions
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which look like fractal dust when seen by an observer characterized by different number field unless
the observer uses some resolution.

This approach suggests even further generalizations. The original observation stimulated by
the work with Riemann hypothesis was that the primes associated with the algebraic extensions
of rationals, in particular Gaussian primes and Eisenstein primes, have very attractive physical
interpretation. Quaternionic primes and rationals might in turn define what might be regarded as
noncommutative generalization of the p-adic and rational-adic topology.

Also infinite-P p-adic topologies are a precisely defined concept using the correspondence be-
tween infinite primes and polynomials and infinite-P p-adic numbers are apart from infinitesimals
equivalent with reals under canonical identification.

2.1.3 ...-Adic topology measures the complexity of the quantum state

The higher the degree of the polynomial, and thus the number of particles in the physical state and
its complexity, the higher the algebraic dimension of the rational quaternions. A complete alge-
braic and quaternion and octonion-dimensional democracy would prevail. Accordingly, space-time
topology would be completely dynamical in the sense that space-time contains both rational-adic,
p-adic regions, infinite-P p-adic and real regions. Physical evolution could be seen as evolution
of mathematical structures in this framework: p-adic topologies would be obviously winners over
rational-adic topologies and p-adic length scale hypothesis would select the surviving p-adic topolo-
gies. For instance, Gaussian-adic and Eisenstein-adic topologies would in turn be higher level sur-
vivers possibly associated with biological systems. Infinite-P p-adic topologies are effectively real
topologies and would represent higher levels of consciousness: perhaps mathematical consciousness
could be assigned to infinite-P p-adics.

Dimensional democracy would be realized in the sense that one can regard the space-time
sheets defining n-sheeted topological condensate also as a 4n-dimensional surface in Hn. This
hypothesis fixes the interactions associated with the topological condensation, and the hierarchical
structure of the topological condensate conforms with the hierarchical ordering of the quaternionic
arguments of the polynomials to which infinite primes are mapped. Polynomials (infinite integers)
at a given level of hierarchy in turn can be interpreted in terms of formation of bound states by
the formation of join along boundaries bonds.

2.1.4 Is adelic principle consistent with the dynamical topology?

There is competing, and as it seems, almost diametrically opposite view. Just like adelic formula
allows to express the norm of a rational number as product of its p-adic norms, various algebraic
number fields and even more general structures such as quaternions allowing the notion of prime,
provide a collection of incomplete but hopefully calculable views about physics. The net descrip-
tion gives rise to quantum TGD formulated using real numbers. These descriptions would be
like summary over all experiences about world of conscious experiencers characterized by p-adic
completions of various four-dimensional algebraic number rationals. What is important is that the
descriptions using algebraic number fields or their generalization might be calculable. This view
need not be conflict with the dynamical view and one could indeed claim that the p-adic physics
associated with various algebraic extensions of rational quaternions provide a model about physics
constructed by various conscious observers. For a given quantum state there would be however
minimal algebraic extension containing all points of the space-time surface in it.

2.2 Are more general adics indeed needed?

The considerations related to Riemann hypothesis inspired the notion of G- and E-adic numbers
in which rational prime p is replaced with Gaussian or Eisenstein prime. The notion of Eisenstein
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prime is so attractive because it makes possible to circumvent the complexification of p-adic num-
bers for p mod 4 = 1 for which

√
−1 exists as a p-adic number. What forces to take the notion of

G-adics very seriously is that Gaussian Mersennes correspond to the p-adic length scale of atomic
nucleus and to important biological length scales in the range between 10 nanometers and few
micrometers. Also the key role of Golden Mean τ in biology and self-organizing systems could
be understood if Q(τ, i) defines D-adic topology. Thus there is great temptation to believe that
the notion of p-adic number generalizes in these sense that any irreducible associated with real
or complex algebraic extension defines generalization of p-adic numbers and that these extensions
appear in the algebraic extensions of quaternions.

Thus one must consider seriously also generalized p-adic numbers, D-adics as they were called
in the chapter ”TGD and Number theory: Riemann Hypothesis”. D-adics would correspond to
powers series of a prime belonging to a complex algebraic extension of rationals. Quaternions
decompose naturally in longitudinal and transversal part and transversal part can be interpreted
as a complex algebraic extension of rationals in the case of both M4 and CP2. Thus some irre-
ducibles of this complex extension could define a generalization of p-adic numbers used to define
the algebraic extension of rational quaternions reduced to a pair of complex coordinates.

Perhaps one could go even further: quaternion-adics defined as power series of quaternionic
primes of norm p suggest themselves. What would be nice that this prime could perhaps be inter-
preted as a representation for the momentum of corresponding space-time sheets. The components
of the prime belong to algebraic extension of rationals and would even code information about ex-
ternal world if the proposed interpretations are correct. One can also ask whether quaternionic
primes could define what might be called quaternion-adic algebras and whether these algebras
might be a basic element of algebraic physics.

This would mean that space-time topology would code information about the quantum numbers
of a physical state. Rings with unit rather than number fields are in question since the p-adic
counterparts of quaternionic integers in general fail to have inverse. It must be emphasized that
the field property might not be absolutely essential. For instance ’rational-adics’ [26], for which
prime p is replaced with a rational q such that norm comes as a power of q, exists as rings with
unit and define topology. Rational-adic topologies could have also quaternionic counterparts.

The idea of q-rational topologies is supported by the physical picture about the correspondence
between Fock states and space-time sheets. Single 3-surface can in principle carry arbitrarily high
fermion and boson numbers but is unstable to a topological decay to 3-surfaces carrying single
fermion and boson states. The translation of this statement to ...-adic context would be that
the Fock states associated with infinite primes which correspond to rational-adic quaternionic
topologies are unstable against decay to states described by polynomial primes in which each
factor corresponds to prime (bosons) or its inverse (fermions) in algebraic extension of quaternions.
This tendency to evolve to prime-adic topologies could be seen also as a manifestation of p-adic
evolution and self-organization. Rational-adic topologies would be simply losers in the fight for
survival against topologies defining number fields. Since also quaternion-adic topologies fail to
define number fields they are expected to be losers in the fight for survival. Winners would
be ...-adic topologies defining number fields. At the level of Fock states this would mean the
unstability of states which contain more than one prime: that this is indeed the case, is one of
the basic assumptions of quantum TGD forced by the experimental fact that elementary particles
correspond to simplest Fock states associated with configuration space spinors.

2.3 Why completion to p-adics necessarily occurs?

There is rather convincing argument in favor of ...-adic physics. Typically one must find zeros
of rational functions of several variables. Simplifying somewhat, at the first level one must find
zeros of polynomials P (x1, x2). Newton’s theorem states that the monic polynomial Pn(y, x) =
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yn + an−1x
n−1 + .. allows a factorization in an algebraically closed number field

P (y, xm) =
∏
k

(y − fk(x)) . (1)

Here fk are polynomials and m is integer which divides n and equals to n for an irreducible
polynomial P . Since the multiplication of x by m:th root of unity (ζm) leaves left hand side
invariant it must permute the factors on right hand side. Thus one can express the formula also as

P (y, x) =
∏

k=1,..m

(y − fk(ζkmx
1/m)) . (2)

When number field is not algebraically closed this means that one must introduce an algebraic
extension by m:th roots of all rationals.

The problem is that these roots are not real in general and one cannot solve the problem by
using a completion to complex numbers since only real extensions for the components of quaternion
are possible. Only in the region where some of the roots of the polynomial are real, this is possible.
The only manner to achieve consistency with the reality requirement is to allow p-adic topology
or possibly rational-adic topology: in this case also the algebraic extension allowing m:th roots
is always finite-dimensional. For instance, for m = 2 p-adic extension of rationals would be 4-
dimensional for p > 2. The situation is similar for rational-adic topology.

If this argument is correct, one can conclude that real topology is possible only in the regions
where real roots of the polynomial equation are possible: in the regions where all roots are complex,
p-adicization gives rise to roots in the algebraic extension of p-adics and p-adic topology emerges
naturally. This picture provides a precise view about how the space-time surface defined by
the polynomial of quaternions decomposes to real and p-adic regions. Also a connection with
catastrophe theory [30] emerges: the boundaries of the catastrophe regions where some roots
coincide, serve also as boundaries between ...-adic and real regions.

2.4 Decomposition of space-time to ...-adic regions

Number-theoretic constraints are important in determining which ...-adic topologies are possible
in a given space-time region. There is no hope of building any unique vision unless one poses
some general principles. Complete algebraic and topological democracy and the generalization
of the notion of p-adic evolution to what might be called rational-adic evolution allow to build
plausible and sufficiently general working hypothesis not requiring too much adhoc assumptions
and allowing at least mathematical testing. A further natural principle states that the topology
for a given region is such that complex extension of rationals is not needed and that the series
defining the normal quaternionic coordinate as function of the space-time quaternionic coordinate
converges and gives rise to a smooth surface.

2.4.1 The power series defining solutions of polynomial equations must converge in
some topology

The roots of polynomials of several variables can be expressed as Taylor series. When the root is
complex, real topology is not possible and some p-adic topology must be considered. This suggests
a very attractive dynamical mechanism of p-adicization. In the regions where the root belongs to
a complex extension of rationals in the real topology, one could find those values of p for which
the series converges p-adically. The rational numbers characterizing the polynomials associated
with the generating infinite primes certainly determine the convergence and the primes for which
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p-adic convergence occurs are certainly functions of these rationals. Hence it could occur that the
p-adic topologies for which convergence occurs correspond to the primes appearing as factors in
these rationals.

In this approch topology is a result of dynamics. Note that also the notion of symmetry
depends on the region of space-time. Contrary to the basic working hypothesis, ...-adic topology
of a given space-time sheet is its ’real’ topology rather than being only an effective topology and the
topology of space-time is completely dynamical being dictated by algebraic physics and smoothness
requirement.

It is also possible that convergence does not occur with respect to any ...-adic topology and in
this case the topology would be discrete. This situation would correspond to primordial chaos but
still the algebraic formulation and Fock space description of the theory would make sense.

2.4.2 Space-time surfaces must be smooth in the completion

The completion must give rise to a smooth or at least continuous ....-adic or real surface satisfying
absolute minimization of Kähler action. This requirement might allow only finite number of...-adic
topologies for a given space-time region. If the completion involves functions expandable in powers
of a (possibly quaternionic) rational q = m/n, then the prime factors of m define natural p-adic
number fields for which completion is possible. Also q itself could define rational-adic topology.
Since the space-time surface decomposes into regions labelled by rationals in an algebraic extension
of rationals q1, there is interesting possibility that q1 as such defines the rational-adic topology so
that there would be no need to understand why the space-time region labelled by q decomposes
into space-time sheets labelled by the prime factors of q.

Whatever the details of the coding are, the coding would mean that the quantum numbers
associated with the space-time sheet would determine the generalized ...-adic topology associated
with it. The information about quantum systems would be mapped to space-time physics and the
coding of quantum numbers to ...-adic topology would solve at a general level the problem how
the information about quantum state is coded into the structure of space-time.

2.5 Universe as an algebraic hologram?

Quaternionic primes have a natural indentification as four-momenta. If the Minkowski norm for
the quaternion is defined using the algebraic norm of the real extension of rationals involved with
the state, mass squared is integer-valued as in super-conformal theories. The use of the algebraic
norm means a loss of information carried by the units of the real algebraic extension K(θ) (see the
appendix of this chapter). Hence one can say that besides ordinary elementary particle quantum
numbers there are algebraic quantum numbers which presumably carry algebraic information.
Very effective coding of information about quantum numbers becomes possible and these quantum
numbers commute with ordinary quantum numbers. This information does not become manifest
for matter-like regions where a real completion of rationals are used. In p-adic regions representing
geometric correlates of mind the situation is different since p-adic number field in question is a
finite algebraic extension of rationals.

Almost every calculation is approximation and completion to reals or p-adics makes possible
to measure how good the approximation is. Real numbers are extremely practical in this respect
but the failure of the real number based physics is that it reduces number to a mere quantity
having a definite size but no number-theoretical properties. This is practical from the point of
view of numerics but means huge loss of capacity for information storage and representation. In
algebraic number theory number contains representation for its construction recipe. It seems that
the correct manner to see numbers is as elements of the state space provided by the algebraic
extension. p-Adic physics using p-adic versions of the algebraic extensions does not lead to a loss
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of this information unlike real physics. Thus the basic topology of the space-time sheet could code
the quantum numbers associated with it.

Since the algebraic extension of rationals, and hence also of p-adics, depends on the number of
particles present in the Fock state coded by the infinite prime, the only possible interpretation is
that the additional quantum numbers code information about the many-particle state. Hence the
idea about ’cognitive representation’ of the fractal quantum numbers of particles of the external
world suggests itself naturally. In particular, the degree of the minimal polynomial for the real
extension Q(θ) is n, where n is the number of particles in the Fock state in the casethe resulting
state represents infinite prime. This means that there are n− 1 quantum numbers represented by
fractal scalings (see Appendix for Dirichlet’s unit theorem). The interpretation as a representation
for the fractal quantum numbers representing information about states of other particles in the
system suggests itself. One cannot exclude the possibility that the fractal quantum numbers
represent momenta or some other quantum numbers of other particles.

If this rather un-orthodox interpretation is correct, then cognitive representations are present
already at the elementary particle level in p-adic regions associated with particles and are realized
as algebraic holograms. Universe as a Computer consisting of sub-computers mimicking each other
would be realized already at the elementary particle level. This view is consistent with the TGD
inspired theory of consciousness. Algebraic physics would also make possible kind of a Gödelian
loop by providing a representation for how the information about the structure of a physical system
is coded into its properties.

This view has also immediate implications for complexity theory. The dimension of the minimal
algebraic extension containing the algebraic number is a unique measure for its complexity. More
concretely: the degree of the minimal polynomial measures the complexity. Everyone can solve
second order polynomial but very few of us remembers formulas for the roots of fourth order
polynomials. For higher orders quadratures do not even exist. Of course, numbers represent
typically coordinates and this is consistent with the general coordinate invariance only if some
preferred coordinates exist. In TGD based physics these coordinates exist: imbedding space allows
(apart from isometries) unique coordinates in which the components of the metric tensor are
rational functions of the coordinates.

Similar realization is fundamental in the second almost-proof of Riemann hypothesis described
in the chapter ”Riemann Hypothesis and Physics”. In this case ζ is interpreted as an element in an
infinite-dimensional algebraic extension of rationals allowing all roots of rationals. The vanishing
of ζ requires that all components of this infinite-dimensional vector contain a common rational
factor which vanishes. This is possible only if an infinite number of partition functions in the
product representation of the modulus squared of ζ are rational and their product vanishes. This
implies Riemann hypothesis. The assumption that only square roots of rationals are needed is very
probably wrong and must be replaced with the assumption that piy is algebraic numbers when
z = 1/2 + iy is zero of ζ for any prime p. It is quite possible that the almost-proof survives this
generalization.

The notion of Platonia discussed already in the introduction adds cognition to this picture
and allows to understand where all those mathematical structures continually invented by math-
ematicians but not realized physically in the conventional sense of the word reside. This notion
takes also the notion of algebraic hologram to its extreme by making space-time points infinitely
structured.

2.6 How to assign a p-adic prime to a given real space-time sheet?

p-Adic mass calculations force to assign p-adic prime also to the real space-time sheets and the
longstanding problem is how this p-adic prime, or possibly many of them, are determined. Number
theoretic view about information concept provides a possible solution of this long-standing problem.
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2.6.1 Number theoretic information concept

The notion of information in TGD framework differs in some respects from the standard notion.

1. The definition of the entropy in p-adic context is based on the notion p-adic logarithm
depending on the p-adic norm of the argument only (Logp(x) = Logp(|x|p) = n) [H2]. For
rational- and even algebraic number valued probabilities this entropy can be regarded as
a real number. The entanglement entropy defined in this manner can be negative so that
the entanglement can carry genuine positive information. Rationally/algebraically entangled
p-adic system has a positive information content only if the number of the entangled state
pairs is proportional to a positive power of the p-adic prime p.

2. This kind of definition of entropy works also in the real-rational/algebraic case and makes
always sense for finite ensembles. This would have deep implications. For ordinary definition
of the entropy NMP [H2] states that entanglement is minimized in the state preparation
process. For the number theoretic definition of entropy entanglement could be generated
during state preparation for both p-adic and real sub-systems, and NMP forces the emergence
of p-adicity (say the number of entangled state is power of prime). The fragility of quantum
coherence is the basic problem of quantum computations and the good news would be that
Nature itself (according to TGD) tends to stabilize quantum coherence both in the real and
p-adic contexts.

3. Quantum-classical correspondence suggests that the notion of information is well defined also
at the space-time level. In the presence of the classical non-determinism of Kähler action
and p-adic non-determinism one can indeed define ensembles, and therefore also probability
distributions and entropies. For a given space-time sheet the natural ensemble consists of the
deterministic pieces of the space-time sheet regarded as different states of the same system.

2.6.2 Life as islands of rational/algebraic numbers in the seas of real and p-adic
continua?

The possibility to define entropy differently for rational/algebraic entangl3ment raises deep ques-
tions.

1. Is physics rational/algebraic at Hilbert space level or does the rational/algebraic entangle-
ment represent only a special kind of entanglement for which the number theoretic definition
of entropy makes sense? If rational/algebraic entanglement corresponds to a bound state
entanglement then the second option seems more sensible and has quite dramatic impli-
cations. For instance, bound-unbound and living-dead dichotomies would correspond to
rational/irrational or algebraic/transcendental dichotomy. Life would correspond to islands
of rationality/algebraicity in the seas of real and p-adic continua.

2. Life would metaphorically reside at the rational/algebraic intersection of reals and p-adics/algebraic
extensions of p-adics. Does this plus quantum-classical correspondence mean that life is a
boundary phenomenon at the space-time level: real and p-adic space-time sheets, action
and intention, meet along common rational/algebraic points at the boundaries of the real
space-time sheets?

3. Does life corresponds to rational or algebraic entanglement? Algebraic option would maxi-
mize the size of the living sector of the state space. Rational numbers are common for reals
and all p-adics: in algebraic case this holds true only if one introduces algebraic extensions
of p-adics. This might make rationals preferred.
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2.6.3 Does space-time sheet represent integer and its prime factorization?

A long-standing problem of quantum TGD is how to associate to a given real space-time sheet
a (not necessarily) unique p-adic prime as required by the p-adic length scale hypothesis. One
could achieve this by requiring that for this prime the negentropy associated with the ensemble
is maximal. The simplest hypothesis is that a real space-time sheet consisting of N deterministic
pieces corresponds to p-adic prime defining the largest factor of N . One could also consider a
more general possibility. If N contains pn as a factor, then the real fractality above n-ary p-adic
length scale Lp(n) = p(n−1)/2Lp corresponds to smoothness in the p-adic topology. This option is
more attractive since it predicts that the fundamental p-adic length scale Lp for a given p can be
effectively replaced by any integer multiple NLp, such that N is not divisible by p. There is indeed
a considerable evidence for small p p-adicity in long length scales. For instance, genetic code and
the appearance of binary pairs like cell membrane consisting of liquid layers suggests 2-adicity in
nano length scales. This view means that the fractal structure of a given real space-time sheet
represents both an integer N and its decomposition to prime factors physically. This obviously
conforms with the physics as a generalized number theory vision.

Quantum-classical correspondence suggests that quantum computation processes might have
counterparts at the level of space-time. An especially interesting process of this kind is the fac-
torization of integers to prime factors. The classical cryptography relies on the fact that the
factorization of large integers to prime factors is a very slow process using classical computation:
the time needed to factor 100 digit number using modern computer would take more than the
recent age of the universe. For quantum computers the factorization is achieved very rapidly using
the famous Shor’s algorithm. Does the factorization process indeed have a space-time counterpart?

Suppose that one can map the integer N to be factored to a real space-time sheet with N
deterministic pieces. If one can measure the powers pni

i of primes pi for which the fractality above
the appropriate p-adic length scale looks smoothness in the p-adic topology, it is possible to deduce
the factorization of N by direct physical measurements of the p-adic length scales characterizing
the representative space-time sheet (say from the resonance frequencies of the radiation associated
with the space-time sheet). If only the p-adic topology corresponding to the largest prime p1 is
realized in this manner, one can deduce first it, and repeat the process for N/pn1 , and so on, until
the full factorization is achieved. A possible test is to generate resonant radiation in a wave guide
of having length which is an integer multiple of the fundamental p-adic length scale and to see
whether frequencies which correspond to the factors of N appear spontaneously.

2.7 Gaussian and Eistenstein primes and physics

Gaussian and Eisenstein primes could give rise to what might be called G- and E-adicities and also
these -adicities might be of physical interest.

2.7.1 Gaussian and Eisenstein primes and elementary particle quantum numbers

The properties of Gaussian and Eisenstein primes have intriguing parallels with quantum TGD at
the level of elementary particle quantum numbers.

1. The lengths of the complex vectors defined by the non-degenerate Gaussian and Eisenstein
primes are square roots of primes as are also the preferred p-adic length scales Lp: this
suggests a direct connection with quantum TGD.

2. Each non-degenerate (purely real or imaginary) Gaussian prime of given norm p corresponds
to 8 different complex numbers G = ±r ± is and G = ±s ± ir. This is the number of
different spin states for the imbedding space spinors and also for the color states of massless
gluons (note that in TGD quark color is not spin like quantum number but is analogous to
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orbital angular momentum). Complex conjugation might be interpreted as a representation
of charge conjugation and multiplication by ±1,±i could give rise to different spin states.
The 4-fold degeneracy associated with the p mod 4 = 3 Gaussian primes could correspond to
the quartet of massless electro-weak gauge bosons with a given helicity [(γ, Z0) ↔ ±p) and
(W+,W−)↔ ±ip].

3. For Eisenstein prime Ep1 the multiplication by ±i does not respect the rationality of the
real part of |Zp1 |2 and the number of states is reduced to four. Eisenstein primes r + isw
and s+ irw have however the same norm squared so that also now the 8-fold degeneracy is
present. When piy1 is of the general form r + i

√
ks this degeneracy is not present.

4. The basic character of the quark color is triality realized as phases w which are third roots of
unity. The fact that the phases are associated with the Eisenstein primes suggests that they
might provide a representation of quark color. One can indeed multiply any Eisenstein prime
in the product decomposition by factor 1, w or w and the interpretation is that the three
primes represent three color states of quark. The obvious interpretation is that each factor
Zp1 with p1 mod 4 = 1 could represent 8 possible leptonic states. Each factor Zp1 satisfying
p1 mod 4 = 3 and p1 mod 3 = 1 conditions simultaneously would correspond to a product of
Eisenstein prime with Eisenstein phase and each prime pi associated with Eisenstein phase
would correspond to one color state of quark. Even a number theoretical counterpart of color
confinement could be imagined.

There is also a further interesting analogy supporting the idea about number theoretical
counterpart of the quark color. ζ decomposes into a product ζ1 × ζ3, such that ζ1 is the
product of p mod 4 = 1 partition functions and ζ3 the product of p mod 4 = 3 partition
functions. This decomposition reminds of the leptonic color singlets and color triplet of
quarks. Rather interestingly, leptons and quarks correspond to Ramond and Neveu-Schwartz
type super Virasoro representations and the fields of N-S representation indeed contain square
roots of complex variable existing p-adically for p mod 4 = 3.

5. What about the most general factors r+is
√
k? Can one assign some kind of color degeneracy

also with these factors? It seems that this is the case. One can always find phase factors of
type U± = (r± is

√
k)/n with minimal values of n (r2 + s2k = n2). The factors 1, U± clearly

give rise to a 3-fold degeneracy analogous to color degeneracy.

6. What about interpretation of the components of the complex integers? For Super Virasoro
representations basic quantum numbers of this kind correspond to energy and longitudinal
momentum. This suggests the interpretation of r2 + s2k as energy, r2 − s2k as mass, and
2rs
√
k as momentum. For the squares r2−s2 +(2rs−s2)w of Eisenstein primes r2−s2/2−rs

corresponds to mass, r2 + s2 − rs to energy, and (2rs − s2)
√

3/2 to momentum. Note that
the sign of mass changes for Gaussian primes in the interchange r ↔ s. The fact that the
hexagonal lattice defined by Eisenstein integers correspond to the root lattice of SU(3) group
means that energy, momentum and mass corresponds to the sides of the triangles in the root
lattice of color group.

2.7.2 G-adic, E-adic and even more general fractals?

Still one line of thoughts relates to the possibility to generalize the notion of p-adicity so that could
speak about G-adic and E-adic number fields. The properties of the Gaussian and Einsenstein
primes indeed strongly suggest a generalization for the notion of p-adic numbers to include what
might be called G-adic or E-adic numbers. In fact, the argument generalizes to the case of all
nine

√
−d type extensions of rationals allowing a unique prime decomposition so that one might

perhaps speak about D-adics.
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1. Consider for definiteness Gaussian primes. The basic point is that the decomposition into
a product of prime factors is unique. For a given Gaussian prime one could consider the
representation of the algebraic extension involved (complex integers in the case of Gaussian
primes) as a ring formed by the formal power series

G =
∑
n

znG
n
p . (3)

Here zn is Gaussian integer with norm smaller than |Gp|, which equals to p for p mod 4 = 3
and
√
p for p mod 4 = 1.

2. If any Gaussian integer z has a unique expansion in powers of Gp such that coefficients have
norm squared smaller than p, modulo G arithmetics makes sense and one can construct the
inverse of G and number field results. This is the case if Gaussian integers behave with
respect to modulo Gp arithmetics like finite field G(p, 2). For p mod 4 = 1 the extension
of the p-adic numbers by introducing

√
−1 as a unit is not possible since

√
−1 exists as a

p-adic number: the proposed structure might perhaps provide the counterpart of the p-adic
complex numbers in the casep mod 4 = 1. Thus the question is whether one could regard
Gaussian p-adic numbers as a natural complexification of p-adics for p mod 4 = 1, perhaps
some kind of square root of Rp, and if they indeed form a number field, do they reduce to
some known algebraic extension of Rp?

3. In the case of Eisenstein numbers one can identify the coefficients zn in the formal power
series E =

∑
znE

n
p as Eisenstein numbers having modulus square smaller than p associated

with Ep and similar argument works also in this case.

4. As already noticed, in the case of complex extensions of form r +
√
−ds a unique prime

factorization is obtained only in nine cases corresponding to d = 1, 2, 3, 7, 11, 19, 46, 67, 163
[18]. The poor man’s argument above does not distinguish between G- and E-adics (d = 1, 3)
and these extensions.One might perhaps call this extensions generally D-adics. This suggests
that generalized p-adics could exist also in this case. In fact, the generalization p-adics
could make sense also for higher-dimensional algebraic extensions allowing unique prime
decomposition. For d = 2 complex algebraic primes are of form r + s

√
−2 satisfying the

condition r2 + 2s2 = p. For d > 2 complex algebraic primes are of form (r + s
√
−d)/2 such

that both r and s are even or odd. Quite generally, the condition p mod d = k2 must be
satisfied.

√
−d corresponds to a root of unity only for d = 1 and d = 3 so that the powers

of a complex primes in this case have a finite number of possible phase angles: this might
make G- and E-adics physically special.

TGD suggests rather interesting physical applications of D-adics.

1. What is interesting from the physics point of view is that for p mod 4 = 1 the points Dn
p are

on the logarithmic spiral zn = pn/2exp(inφ0/2), where φ is the phase associated with D2
p.

The logarithmic spiral can be written also as ρ = exp(nlog(p)φ/φ0). This reminds strongly of
the logarithmic spirals, which are fractal structures frequently encountered in self-organizing
systems: D-adics might provide the mathematics for the modelling of these structures.

2. p-Adic length scale hypothesis should hold true also for Gaussian primes, in particular,
Gaussian Mersennes of form (1± i)k − 1 should be especially interesting from TGD point of
view.

i) The integers k associated with the lowest Gaussian Mersennes are following: 2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113.
k = 113 corresponds to the p-adic length scale associated with the atomic nucleus and muon.
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Thus all known charged leptons, rather than only e and τ , as well as nuclear physics length
scale, correspond to Mersenne primes in the generalized sense.

ii) The primes k = 151, 157, 163, 167 define perhaps the most fundamental biological length
scales: k = 151 corresponds to the thickness of the cell membrane of about ten nanometers
and k = 167 to cell size about 2.56 µm. This strongly suggests that cellular organisms have
evolved to their present form through four basic stages.

iii) k = 239, 241, 283, 353, 367, 379, 457 associated with the next Gaussian Mersennes define
astronomical length scales. k = 239 and k = 241 correspond to the p-adic time scales .55
ms and 1.1 ms: basic time scales associated with nerve pulse transmission are in question.
k = 283 corresponds to the time scale of 38.6 min. An interesting question is whether this
period could define a fundamental biological rhythm. The length scale L(353) corresponds
to about 2.6× 106 light years, roughly the size scale of galaxies. The length scale L(367) '
×3.3 × 108 light years is of same order of magnitude as the size scale of the large voids
containing galaxies on their boundaries (note the analogy with cells). T (379) ' 2.1 × 1010

years corresponds to the lower bound for the order of the age of the Universe. T (457) ∼ 1022

years defines a completely super-astronomical time and length scale.

3. Eisenstein integers form a hexagonal lattice equivalent with the root lattice of the color group
SU(3). Microtubular surface defines a hexagonal lattice on the surface of a cylinder which
suggests an interpretation in terms of E-adicity. Also the patterns of neural activity form
often hexagonal lattices.

2.7.3 Gaussian and Eisenstein versions of infinite primes

The vision about quantum TGD as a generalized number theory generates a further line of
thoughts.

1. As has been found, the zeros of ζ code for the physical states of a super-symmetric arithmetic
quantum field theory. As a matter fact, the arithmetic quantum field theory in question can
be identified as arithmetic quantum field theory in which single particle states are labelled
by Gaussian primes. The properties of the Gaussian primes imply that the single particle
states of this theory have 8-fold degeneracy plus the four-fold degeneracy related to the ±i or
±1-factor which could be interpreted as a phase factor associated with any p mod 4 = 3 type
Gaussian prime. Also Eisenstein primes could allow the construction of a similar arithmetic
quantum field theory.

2. The construction of the infinite primes reduces to a repeated second quantization of an arith-
metic quantum field theory. A straightforward generalization of the procedure of the previous
chapter allows to define also the notion of infinite Gaussian and Eisenstein primes. Since
each infinite prime is in a well-defined sense a composite of finite primes playing the role
of elementary particles, this would mean that each composite prime in the expansion of an
infinite prime has either four-fold degeneracy or eight-fold degeneracy. The interpretation of
infinite primes could thus literally be as many-particle states of quantum TGD. In TGD the
topology of space-time surfaces of infinite size is characterized by infinite-P p-adic topology
and the possibility of infinite-P p-, G- and E-adic (and more generally, D-adic) topologies
suggests the fascinating possibility that this infinite-P p-adic topology carries implicitly in-
formation about the discrete quantum numbers of all particles represented as space-time
sheets glued to the larger space-time sheet.
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2.8 p-Adic length scale hypothesis and quaternionic primality

p-Adic length scale hypothesis states that fundamental length scales correspond to the so called
p-adic length scales proportional to

√
p, p prime. Even more: the p-adic primes p ' 2k, k prime

or possibly power of prime, are especially interesting physically. The so called elementary particle-
blackhole analogy gives strong support for this hypothesis. Elementary particles correspond to the
so called CP2 type extremals in TGD. Elementary particle horizon can be defined as a surface
at which the Euclidian signature of the metric of the space-time surface containing topologi-
cally condensed CP2 type extremal, changes to Minkowskian signature. The generalization of the
Hawking-Bekenstein formula relates the real counterpart of the p-adic entropy associated with the
elementary particle to the area of the elementary particle horizon. If one requires that the radius of
the elementary particle horizon corresponds to a p-adic length scale: R = L(k) or kn/2L(k) where
k is prime, then p is automatically near to 2k

n

and p-adic length scale hypothesis is reproduced!
The proportionality of length scale to

√
p, rather than p, follows from p-adic thermodynamics for

mass squared (!) operator and from Uncertainty Principle.
What Tony Smith [19] suggested, was a beautiful connection with number theory based on the

generalization of the concept of a prime number. In the so called D4 lattice regarded as consisting
of integer quaternions, one can identify prime quaternions as the generators of the multiplicative
algebra of the integer quaternions. From the basic properties of the quaternion norm it follows
directly that prime quaternions correspond to the 3-dimensional spheres R2 = p, p prime. The
crucial point from the TGD:eish point of view is the appearance of the square of the norm instead
of the norm. One can even define the product of spheres R2 = n1 and R2 = n2 by defining the
product sphere with norm squared R2 = n1n2 to consist of the quaternions, which are products of
quaternions with norms squared n1 and n2 respectively. Prime spheres correspond to n = p. The
powers of sphere p correspond to a multiplicatively closed structure consisting of powers pn of the
sphere p. It is also possible to speak about the multiplication of balls and prime balls in the case
of integer quaternions.

p-Adic length scale hypothesis follows if one assumes that the Euclidian piece of the space-time
surrounding the topologically condensed CP2 type extremal can be approximated with a quaternion
integer lattice with radius squared equal to r2 = kn, k prime. One manner to understand the
finiteness in the time direction is that topological sum contacts of CP2 type extremal are not static
3-dimensional topological sum contacts but genuinely four-dimensional: 3-dimensional contact is
created, expands to a maximum size and is gradually reduced to point. The Euclidian space-
time volume containing the contact would correspond to an Euclidian region R2 = kn of space-
time. The distances of the lattice points would be measured using the induced metric. These
contacts could have arbitrarily long duration from the point of view of external observer since
classical gravitational fields give rise to strong time dilation effects (strongest on the boundary
of the Euclidian region where the metric becomes degenerate with the emergence of a light like
direction).

Lattice structure is essential for the argument. Lattice structures of type D4 indeed emerge
naturally in the p-adic QFT limit of TGD as also in the construction of the p-adic counterparts
of the space-time surfaces as p-adically analytic surfaces. The essential idea is to construct the
p-adic surface by first discretizing space-time surface using a p-adic cutoff in k:th pinary digit and
mapping this surface to its p-adic counterpart and complete this to a unique smooth p-adically
analytic surface. This leads to a fractal construction in which a given interval is decomposed
to p smaller intervals, when the resolution is increased. In the 4-dimensional case one naturally
obtains a fractal hierarchy of nested D4 lattices. The interior of the elementary particle horizon
with Euclidian signature corresponds to some subset of the quaternionic integer lattice D4: an
attractive possibility is that the absolute minimization of the Kähler action and the maximization
of the Kähler function force this set to be a ball R2 ≤ kn, k prime.
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3 Scaling hierarchies and physics as a generalized number
theory

The scaling hierarchies defined by powers of Φ and primes p probably reflect something very
profound. Mueller has proposed also a scaling law in powers of e [40]. This scaling law can be
however questioned since Φ2 = 2.6180.. is rather near to e = 2.7183... Note that powers of e define
p-dimensional extension of Rp since ep exists as a p-adic number in this case.

The interpretation of the p-adic as physics of cognition and the vision about reduction of physics
to rational physics continuable algebraically to various extensions of rationals and p-adic number
fields is an attractive general framework allowing to understand how p-adic fractality could emerge
in real physics. In this section it will be found that this vision provides a concrete tool in principle
allowing to construct global solutions of field equations by reducing long length scale real physics
to short length scale p-adic physics. Also p-adic length scale hypothesis can be understood and
the notion of multi-p p-fractality can be formulated in precise sense in this framework. This vision
leads also to a concrete quantum model for how intentions are transformed to actions and the
S-matrix for the process has the same general form as the ordinary S-matrix.

The fractal hierarchy associated with Golden mean cannot be understood in a manner analogous
to p-adic fractal hierarchies. Rather, the understanding of Golden Mean and Fibonacci series could
reduce to the hypothesis that space-time surfaces, and thus the geometry of physical systems,
provide a representations for the hierarchy of Fibonacci numbers characterizing the Jones inclusions
of infinite-dimensional Clifford sub-algebras of configuration space spinors identifiable as infinite-
dimensional von Neumann algebras known as hyper-finite factors of type II1 (not that configuration
space corresponds here to the ”world of classical worlds”). The emergence of powers of e has been
discussed in [E8] and will not be discussed here.

3.1 p-Adic physics and the construction of solutions of field equations

The number theoretic vision about physics relies on the idea that physics or, rather what we can
know about it, is basically rational number based. One interpretation would be that space-time
surfaces, the induced spinors at space-time surfaces, configuration space spinor fields, S-matrix,
etc..., can be obtained by algebraically continuing their values in a discrete subset of rational variant
of the geometric structure considered to appropriate completion of rationals (real or p-adic). The
existence of the algebraic continuation poses very strong additional constraints on physics but has
not provided any practical means to solve quantum TGD.

In the following it is however demonstrated that this view leads to a very powerful iterative
method of constructing global solutions of classical field equations from local data and at the
same time gives justification for the notion of p-adic fractality, which has provided very successful
approach not only to elementary particle physics but also physics at longer scales. The basic idea is
that mere p-adic continuity and smoothness imply fractal long range correlations between rational
points which are very close p-adically but far from each other in the real sense and vice versa.

3.1.1 The emergence of a rational cutoff

For a given p-adic continuation only a subset of rational points is acceptable since the simultaneous
requirements of real and p-adic continuity can be satisfied only if one introduces ultraviolet cutoff
length scale. This means that the distances between subset of rational points fixing the dynamics
of the quantities involved are above some cutoff length scale, which is expected to depend on the
p-adic number field Rp as well as a particular solution of field equations. The continued quantities
coincide only in this subset of rationals but not in shorter length scales.
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The presence of the rational cutoff implies that the dynamics at short scales becomes effectively
discrete. Reality is however not discrete: discreteness and rationality only characterize the inher-
ent limitations of our knowledge about reality. This conforms with the fact that our numerical
calculations are always discrete and involve finite set of points.

The intersection points of various p-adic continuations with real space-time surface should code
for all actual information that a particular p-adic physics can give about real physics in classical
sense. There are reasons to believe that real space-time sheets are in the general case characterized
by integers n decomposing into products of powers of primes pi. One can expect that for pi-adic
continuations the sets of intersection points are especially large and that these p-adic space-time
surfaces can be said to provide a good discrete cognitive mimicry of the real space-time surface.

Adelic formula represents real number as product of inverse of its p-adic norms. This raises
the hope that taken together these intersections could allow to determine the real surface and thus
classical physics to a high degree. This idea generalizes to quantum context too.

The actual construction of the algebraic continuation from a subset of rational points is of
course something which cannot be done in practice and this is not even necessary since much more
elegant approach is possible.

3.1.2 Hierarchy of algebraic physics

One of the basic hypothesis of quantum TGD is that it is possible to define exponent of Kähler
action in terms of fermionic determinants associated with the modified Dirac operator derivable
from a Dirac action related super-symmetrically to the Kähler action.

If this is true, a very elegant manner to define hierarchy of physics in various algebraic extensions
of rational numbers and p-adic numbers becomes possible. The observation is that the continuation
to various p-adic numbers fields and their extensions for the fermionic determinant can be simply
done by allowing only the eigenvalues which belong to the extension of rationals involved and solve
field equations for the resulting Kähler function. Hence a hierarchy of fermionic determinants
results. The value of the dynamical Planck constant characterizes in this approach the scale factor
of the M4 metric in various number theoretical variants of the imbedding space H = M4 × CP2

glued together along subsets of rational points of H. The values of h̄ are determined from the
requirement of quantum criticality [C6] meaning that Kähler coupling strength is analogous to
critical temperature.

In this approach there is no need to restrict the imbedding space points to the algebraic ex-
tension of rationals and to try to formulate the counterparts of field equations in these discrete
imbedding spaces.

3.1.3 p-Adic short range physics codes for long range real physics and vice versa

One should be able to construct global solutions of field equations numerically or by engineering
them from the large repertoire of known exact solutions [D1]. This challenge looks formidable since
the field equations are extremely non-linear and the failure of the strict non-determinism seems to
make even in principle the construction of global solutions impossible as a boundary value problem
or initial value problem.

The hope is that short distance physics might somehow code for long distance physics. If this
kind of coding is possible at all, p-adicity should be crucial for achieving it. This suggests that
one must articulate the question more precisely by characterizing what we mean with the phrases
”short distance” and ”long distance”. The notion of short distance in p-adic physics is completely
different from that in real physics, where rationals very close to each other can be arbitrary far
away in the real sense, and vice versa. Could it be that in the statement ”Short length scale physics
codes for long length scale physics” the attribute ”short”/”long” could refer to p-adic/real norm,
real/p-adic norm, or both depending on the situation?
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The point is that rational imbedding space points very near to each other in the real sense are
in general at arbitrarily large distances in p-adic sense and vice versa. This observation leads to
an elegant method of constructing solutions of field equations.

1. Select a rational point of the imbedding space and solve field equations in the real sense in an
arbitrary small neighborhood U of this point. This can be done with an arbitrary accuracy
by choosing U to be sufficiently small. It is possible to solve the linearized field equations or
use a piece of an exact solution going through the point in question.

2. Select a subset of rational points in U and interpret them as points of p-adic imbedding
space and space-time surface. In the p-adic sense these points are in general at arbitrary
large distances from each and real continuity and smoothness alone imply p-adic long range
correlations. Solve now p-adic field equations in p-adically small neighborhoods of these
points. Again the accuracy can be arbitrarily high if the neighborhoods are choose small
enough. The use of exact solutions of course allows to overcome the numerical restrictions.

3. Restrict the solutions in these small p-adic neighborhoods to rational points and interpret
these points as real points having arbitrarily large distances. p-Adic smoothness and conti-
nuity alone imply fractal long range correlations between rational points which are arbitrary
distant in the real sense. Return to 1) and continue the loop indefinitely.

In this manner one obtains even in numerical approach more and more small neighborhoods
representing almost exact p-adic and real solutions and the process can be continued indefinitely.

Some comments about the construction are in order.

1. Essentially two different field equations are in question: real field equations fix the local
behavior of the real solutions and p-adic field equations fix the long range behavior of real
solutions. Real/p-adic global behavior is transformed to local p-adic/real behavior. This
might be the deepest reason why for the hierarchy of p-adic physics.

2. The failure of the strict determinism for the dynamics dictated by Kähler action and p-adic
non-determinism due to the existence of p-adic pseudo constants give good hopes that the
construction indeed makes it possible to glue together the (not necessarily) small pieces of
space-time surfaces inside which solutions are very precise or exact.

3. Although the full solution might be impossible to achieve, the predicted long range correla-
tions implied by the p-adic fractality at the real space-time surface are a testable prediction
for which p-adic mass calculations and applications of TGD to biology provide support.

4. It is also possible to generalize the procedure by changing the value of p at some rational
points and in this manner construct real space-time sheets characterized by different p-adic
primes.

5. One can consider also the possibility that several p-adic solutions are constructed at given
rational point and the rational points associated with p-adic space-time sheets labelled by
p1, ...., pn belong to the real surface. This would mean that real surface would be multi-p
p-adic fractal.

I have earlier suggested that even elementary particles are indeed characterized by integers and that
only particles for which the integers have common prime factors interact by exchanging particles
characterized by common prime factors. In particular, the primes p = 2, 3, ....., 23 would be com-
mon to the known elementary particles and appear in the expression of the gravitational constant.
Multi-p p-fractality leads also to an explanation for the weakness of the gravitational constant. The
construction recipe for the solutions would give a concrete meaning for these heuristic proposals.
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This approach is not restricted to space-time dynamics but is expected to apply also at the
level of say S-matrix and all mathematical object having physical relevance. For instance, p-adic
four-momenta appear as parameters of S-matrix elements. p-Adic four-momenta very near to each
other p-adically restricted to rational momenta define real momenta which are not close to each
other and the mere p-adic continuity and smoothness imply fractal long range correlations in the
real momentum space and vice versa.

3.1.4 p-Adic length scale hypothesis

Approximate p1-adicity implies also approximate p2-adicity of the space-time surface for primes
p ' pk1 . p-Adic length scale hypothesis indeed states that primes p ' 2k are favored and this might
be due to simultaneous p ' 2k- and 2-adicity. The long range fractal correlations in real space-time
implied by 2-adicity would indeed resemble those implied by p ' 2k and both p ' 2k-adic and
2-adic space-time sheets have larger number of common points with the real space-time sheet.

If the scaling factor λ of h̄ appearing in the dark matter hierarchy is in good approximation
λ = 211 also dark matter hierarchy comes into play in a resonant manner and dark space-time
sheets at various levels of the hierarchy tend to have many intersection points with each other.

There is however a problem involved with the understanding of the origin of the p-adic length
scale hypothesis if the correspondence via common rationals is assumed.

1. The mass calculations based on p-adic thermodynamics for Virasoro generator L0 predict that
mass squared is proportional to 1/p and Uncertainty Principle implies that Lp is proportional
to
√
p rather than p, which looks more natural if common rationals define the correspondence

between real and p-adic physics.

2. It would seem that length dp ' pR, R or order CP2 length, in the induced space-time
metric must correspond to a length Lp '

√
pR in M4. This could be understood if space-

like geodesic lines at real space-time sheet obeying effective p-adic topology are like orbits
of a particle performing Brownian motion so that the space-like geodesic connecting points
with M4 distance rM4 has a length rX4 ∝ r2

M4 . Geodesic random walk with randomness
associated with the motion in CP2 degrees of freedom could be in question. The effective
p-adic topology indeed induces a strong local wiggling in CP2 degrees of freedom so that rX4

increases and can depend non-linearly on rM4 .

3. If the size of the space-time sheet associated with the particle has size dp ∼ pR in the
induced metric, the corresponding M4 size would be about Lp ∝

√
pR and p-adic length

scale hypothesis results.

4. The strongly non-perturbative and chaotic behavior rX4 ∝ r2
M4 is assumed to continue only

up to Lp. At longer length scales the space-time distance dp associated with Lp becomes the
unit of space-time distance and geodesic distance rX4 is in a good approximation given by

rX4 =
rM4

Lp
dp ∝

√
p× rM4 , (4)

and is thus linear in M4 distance rM4 .

3.1.5 Does cognition automatically solve real field equations in long length scales?

In TGD inspired theory of consciousness p-adic space-time sheets are identified as space-time
correlates of cognition. Therefore our thoughts would have literally infinite size in the real topology
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if p-adics and reals correspond to each other via common rationals (also other correspondence based
on the separate canonical identification of integers m and n in q = m/n with p-adic numbers).

The cognitive solution of field equations in very small p-adic region would solve field equations
in real sense in a discrete point set in very long real length scales. This would allow to understand
why the notions of Universe and infinity are a natural part of our conscious experience although
our sensory input is about an infinitesimally small region in the scale of universe.

The idea about Universe performing mimicry at all possible levels is one of the basic ideas of
TGD inspired theory of consciousness. Universe could indeed understand and represent the long
length scale real dynamics using local p-adic physics. The challenge would be to make quantum
jumps generating p-adic surfaces having large number of common points with the real space-time
surface. We are used to call this activity theorizing and the progress of science towards smaller
real length scales means progress towards longer length scales in p-adic sense. Also real physics
can represent p-adic physics: written language and computer represent examples of this mimicry.

3.2 A more detailed view about how local p-adic physics codes for p-adic
fractal long range correlations of the real physics

The vision just described gives only a rough heuristic view about how the local p-adic physics
could code for the p-adic fractality of long range real physics. There are highly non-trivial details
related to the treatment of M4 and CP2 coordinates and to the mapping of p-adic H-coordinates
to their real counterparts and vice versa.

3.2.1 How real and p-adic space-time regions are glued together?

The first task is to visualize how real and p-adic space-time regions relate to each other. It
is convenient to start with the extension of real axis to contain also p-adic points. For finite
rationals q = m/n, m and n have finite power expansions in powers of p and one can always write
q = pk × r/s such that r and s are not divisible by p and thus have pinary expansion of in powers
of p as x = x0 +

∑N
1 xnp

n, xi ∈ {0, p}, x0 6= 0.
One can always express p-adic number as x = pny where y has p-adic norm 1 and has expansion

in non-negative powers of p. When x is rational but not integer the expansion contains infinite
number of terms but is periodic. If the expansion is infinite and non-periodic, one can speak about
strictly p-adic number having infinite value as a real number.

In the same manner real number x can be written as x = pny, where y is either rational or has
infinite non-periodic expansion y = r0 +

∑
n>0 rnp

−n in negative powers of p. As a p-adic number
y is infinite. In this case one can speak about strictly real numbers.

This gives a visual idea about what the solution of field equations locally in various number
fields could mean and how these solutions are glued together along common rationals. In the
following I shall be somewhat sloppy and treat the rational points of the imbedding space as if
they were points of real axis in order to avoid clumsy formulas.

1. The p-adic variants of field equations can be solved in the strictly p-adic realm and by p-
adic smoothness these solutions are well defined also in as subset of rational points. The
strictly p-adic points in a neighborhood of a given rational point correspond as real points
to infinitely distant points of M4. The possibility of p-adic pseudo constants means that for
rational points of M4 having sufficiently large p-adic norm, the values of CP2 coordinates or
induced spinor fields can be chosen more or less freely.

2. One can solve the p-adic field equations in any p-adic neighborhood Un(q) = {x = q + pny}
of a rational point q of M4, where y has a unit p-adic norm and select the values of fields at
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different points q1 and q2 freely as long as the spheres Un(q1) and Un(q2) are disjoint (these
spheres are either identical or disjoint by p-adic ultra-metricity).

The points in the p-adic continuum part of these solutions are at an infinite distance from
q in M4. The points which are well-defined in real sense form a discrete subset of rational
points of M4. The p-adic space-time surface constructed in this manner defines a discrete
fractal hierarchy of rational space-time points besides the original points inside the p-adic
spheres. In real sense the rational points have finite distances and could belong to disjoint
real space-time sheets. The failure of the strict non-determinism for the field equations in
the real sense gives hopes for gluing these sheets partially together (say in particle reactions
with particles represented as 3-surfaces).

3. All rational points q of the p-adic space-time sheet can be interpreted as real rational points
and one can solve the field equations in the real sense in the neighborhoods Un(q) = {x =
q+pny} corresponding to real numbers in the the range pn ≤ x ≤ pn+1. Real smoothness and
continuity fix the solutions at finite rational points inside Un(q) and by the phenomenon of
p-adic pseudo constants these values can be consistent with p-adic field equations. Obviously
one can can continue the construction process indefinitely.

3.2.2 p-Adic scalings act only in M4 degrees of freedom

p-Adic fractality suggests that finite real space-time sheets around points x + pn, x = 0, are
obtained as by just scaling of the M4 coordinates having origin at x = 0 by pn of the solution
defined in a neighborhood of x and leaving CP2 coordinates as such. The known extremals of
Kähler action indeed allow M4 scalings as dynamical symmetries.

One can understand why no scaling should appear in CP2 degrees of freedom. CP2 is complex
projective space for which points can be regarded as complex planes and for these p-adic scalings
act trivially. It is worth of emphasizing that here could lie a further deep number theoretic reason
for why the space S in H = M4 × S must be a projective space.

3.2.3 What p-adic fractality for real space-time surfaces really means?

The identification of p-adic and real M4 coordinates of rational points as such is crucial for p-adic
fractality. On the other hand, the identification rational real and p-adic CP2 coordinates as such
would not be consistent with the idea that p-adic smoothness and continuity imply p-adic fractality
manifested as long range correlations for real space-time sheets

The point is that p-adic fractality is not stable against small p-adic deformations of CP2

coordinates as function of M4 coordinates for solutions representable as maps M4 → CP2. Indeed,
if the rational valued p-adic CP2 coordinates are mapped as such to real coordinates, the addition
of large power pn to CP2 coordinate implies small modification in p-adic sense but large change in
the real sense so that correlations of CP2 at p-adically scaled M4 points would be completely lost.

The situation changes if the map of p-adic CP2 coordinates to real ones is continuous so that p-
adically small deformations of the p-adic space-time points are mapped to small real deformations
of the real space-time points.

1. Canonical identification I : x =
∑
xnp

n →
∑
xnp

−n satisfies continuity constraint but does
not map rationals to rationals.

2. The modification of the canonical identification given by

I(q = pk × r

s
) = pk × I(r)

I(s)
(5)
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is uniquely defined for rational points, maps rationals to rationals, has a symmetry under
exchange of target and domain. This map reduces to a direct identification of rationals for
0 ≤ r < p and 0 ≤ s < p.

3. The form of this map is not general coordinate invariant nor invariant under color isometries.
The natural requirement is that the map should respect the symmetries of CP2 maximally.
Therefore the complex coordinates transforming linearly under U(2) subgroup of SU(3) defin-
ing the projective coordinates of CP2 are a natural choice. The map in question would map
the real components of complex coordinates to their p-adic variants and vice versa. The
residual U(2) symmetries correspond to rational unitary 2× 2-matrices for which matrix ele-
ments are of form Uij = pkr/s, r < p, s < p. It would seem that these transformations must
form a finite subgroup if they define a subgroup at all. In case of U(1) Pythagorean phases
define rational phases but sufficiently high powers fail to satisfy the conditions r < p, s < p.
Also algebraic extensions of p-adic numbers can be considered.

4. The possibility of pseudo constant allows to modify canonical identification further so that
it reduces to the direct identification of real and p-adic rationals if the highest powers of p
in r and s (q = pnr/s) are not higher than pN . Write x =

∑
n≥0 xnp

n = xN) + pN+1y with
xN) =

∑N
n=0 xnp

n, x0 6= 0, y0 6= 0, and define IN (x) = xN) + pN+1I(y). For q = pnr/s
define IN (q) = pnIN (r)/IN (s). This map reduces to the direct identification of real and
p-adic rationals for y = 0.

5. There is no need to introduce the imaginary unit explicitly. In case of spinors imaginary unit
can be represented by the antisymmetric 2×2-matrix εij satisfying ε12 = 1. As a matter fact,
the introduction of imaginary unit as number would lead to problems since for p mod 4 = 3
imaginary unit should be introduced as an algebraic extension and CP2 in this sense would
be an algebraic extension of RP2. The fact that the algebraic extension of p-adic numbers
by
√
−1 is equivalent with an extension introducing

√
p− 1 supports the view that algebraic

imaginary unit has nothing to do with the geometric imaginary unit defined by Kähler form
of CP2. For p mod 4 = 1

√
−1 exists as a p-adic number but is infinite as a real number so

that the notion of finite complex rational would not make sense.

3.2.4 Preferred CP2 coordinates as a space-time correlate for the selection of quan-
tization axis

Complex CP2 coordinates are fixed only apart from the choice of the quantization directions of
color isospin and hyper charge axis in SU(3) Lie algebra. Hence the selection of quantization
axes seems to emerge at the level of the generalized space-time geometry as quantum classical
correspondence indeed requires.

In a well-defined sense the choice of the quantization axis and a special coordinate system
implies the breaking of color symmetry and general coordinate invariance. This breaking is induced
by the presence of p-adic space-time sheets identified as correlates for cognition and intentionality.
One could perhaps say that the cognition affects real physics via the imbedding space points shared
by real and p-adic space-time sheets and that these common points define discrete coordinatization
of the real space-time surface analogous to discretization resulting in any numerical computation.

3.2.5 Relationship between real and p-adic induced spinor fields

Besides imbedding space coordinates also induced spinor fields are fundamental variables in TGD.
The free second quantized induced spinor fields define the fermionic oscillator operators in terms
of which the gamma matrices giving rise to spinor structure of the ”world of classical worlds” can
be expressed.
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p-Adic fractal long range correlations must hold true also for the induced spinor fields and
they are in exactly the same role as CP2 coordinates so that the variant of canonical identification
mapping rationals to rationals should map the real and imaginary parts of real induced spinor
fields to their p-adic counterparts and vice versa at the rational space-time points common to
p-adic and real space-time sheets.

3.2.6 Could quantum jumps transforming intentions to actions really occur?

The idea that intentional action corresponds to a quantum jump in which p-adic space-time sheet
is transformed to a real one traversing through rational points common to p-adic and real space-
time sheet is consistent with the conservation laws since the sign of the conserved inertial energy
can be also negative in TGD framework and the density of inertial energy vanishes in cosmological
length scales [D5]. Also the non-diagonal transitions p1 → p2 are in principle possible and would
correspond to intersections of p-adic space-time sheets having a common subset of rational points.
Kind of phase transitions changing the character of intention or cognition would be in question.

1. Realization of intention as a scattering process

The first question concerns the interpretation of this process and possibility to find some familiar
counterpart for it in quantum field theory framework. The general framework of quantum TGD
suggests that the points common to real and p-adic space-time sheets could perhaps be regarded as
arguments of an n-point function determining the transition amplitudes for p-adic to real transition
or p1 → p2-adic transitions. The scattering event transforming an p-adic surface (infinitely distant
real surface in real M4) to a real finite sized surface (infinitely distant p-adic surface in p-adic M4)
would be in question.

2. Could S-matrix for realizations of intentions have the same general form as the ordinary
S-matrix?

One might hope that the realization of intention as a number theoretic scattering process could
be characterized by an S-matrix, which one might hope of being unitary in some sense. These
S-matrix elements could be interpreted at fundamental level as probability amplitudes between
intentions to prepare a define initial state and the state resulting in the process.

Super-conformal invariance is a basic symmetry of quantum TGD which suggests that the S-
matrix in question should be constructible in terms of n-point functions of a conformal field theory
restricted to a subset of rational points shared by real and p-adic space-time surfaces or their
causal determinants. According to the general vision discussed in [C1], the construction of n-point
functions effectively reduces to that at 2-dimensional sections of light-like causal determinants of
space-time surfaces identified as partonic space-time sheets.

The idea that physics in various number fields results by algebraic continuation of rational
physics serves as a valuable guideline and suggests that the form of the S-matrices between different
number fields (call them non-diagonal S-matrices) could be essentially the same as that of diagonal
S-matrices. If this picture is correct then the basic differences to ordinary real S-matrix would be
following.

1. Intentional action could transform p-adic space-time surface to a real one only if the exponent
of Kähler function for both is rational valued (or belongs to algebraic extension of rationals).

2. The points appearing as arguments of n-point function associated with the non-diagonal S-
matrix are a subset of rational points of imbedding space whereas in the real case, where
the integration over these points is well defined, all values of arguments can be allowed.
Thus the difference between ordinary S-matrix and more general S-matrices would be that
a continuous Fourier transform of n-point function in space-time domain is not possible in
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the latter case. The inherent nature of cognition would be that it favors localization in the
position space.

3. Objection and its resolution

Exponent of Kähler function is the key piece of the configuration space spinor field. There is a
strong counter argument against the existence of the Kähler function in the p-adic context. The
basic problem is that the definite integral defining the Kähler action is not p-adically well-defined
except in the special cases when it can be done algebraically. Algebraic integration is however very
tricky and numerically completely unstable.

The definition of the exponent of Kähler function in terms of Dirac determinants or, perhaps
equivalently, as a result of normal ordering of the modified Dirac action for second quantized
induced spinors might however lead to an elegant resolution of this problem. This approach is
discussed in detail in [B4, D1]. The idea is that Dirac determinant can be defined as a product of
eigenvalues of the modified Dirac operator and one ends up to a hierarchy of theories based on the
restriction of the eigenvalues to various algebraic extensions of rationals identified as a hierarchy
associated with corresponding algebraic extensions of p-adic numbers. This hierarchy corresponds
to a hierarchy of theories (and also physics!) based on varying values of Planck constant. The
elegance of this approach is that no discretization at space-time level would be needed: everything
reduces to the generalized eigenvalue spectrum of the modified Dirac operator.

4. A more detailed view

Consider the proposed approach in more detail.

1. Fermionic oscillator operators are assigned with the generalized eigenvectors of the modified
Dirac operator defined at the light-like causal determinants:

Ψ =
∑
n

Ψnbn ,

DΨn = ΓαDαΨn = λnOΨn , O ≡ nαΓα . (6)

Here Γα = TαkΓk denote so called modified gamma matrices expressible in terms of the
energy momentum current Tαk assignable to Kähler action [B4]. The replacement of the
ordinary gamma matrices with modified ones is forced by the requirement that the super-
symmetries of the modified Dirac action are consistent with the property of being an extremal
of Kähler action. nα is a light like vector assignable to the light-like causal determinant and
O = nαΓα must be rational and have the same value at real and p-adic side at rational points.
The integer n labels the eigenvalues λn of the modified Dirac operator, and bn corresponds
to the corresponding fermionic oscillator operator.

2. The condition that the p-adic and real variants Ψ if the Ψ are identical at common rational
points of real and p-adic space-time surface (the same applies to 4-surfaces corresponding to
different p-adic number fields) poses a strong constraint on the algebraic continuation from
rationals to p-adics and gives hopes of deriving implications of this approach.

3. Ordinary fermionic anti-commutation relations do not refer specifically to any number field.
Super Virasoro (anti-)commutation relations involve only rationals. This suggest that fermionic
Fock space spanned by the oscillator operators bn is universal and same for reals and p-adic
numbers and can be regarded as rational. Same would apply to Super Virasoro representa-
tions. Also the possibility to interpret configuration space spinor fields as quantum super-
positions of Boolean statements supports this kind of universality. This gives good hopes
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that the contribution of the inner produces between Fock states to the S-matrix elements are
number field independent.

4. Dirac determinant can be defined as the product of the eigenvalues λn restricted to a given
algebraic extension of rationals. The solutions of the modified Dirac equation correspond
to vanishing eigen values and define zero modes generating conformal super-symmetries and
are not of course included.

5. Only those operators bn for which λn belongs to the algebraic extension of rationals in
question are used to construct physical states for a given algebraic extension of rationals.
This might mean an enormous simplification of the formalism in accordance with the fact that
configuration space Clifford algebra corresponds as a von Neumann algebra to a hyper-finite
factor of type II1 for which finite truncations by definition allow excellent approximations
[C6]. One can even ask whether this hierarchy of algebraic extensions of rationals could in
fact define a hierarchy of finite-dimensional Clifford algebras. If so then the general theory
of hyper-finite factors of type II1 would provide an extremely powerful tool.

3.3 Cognition, logic, and p-adicity

There seems to be a nice connection between logic aspects of cognition and p-adicity. In particular,
p-valued logic for p = 2k−n has interpretation in terms of ordinary Boolean logic with n ”taboos”
so that p-valued logic does not conflict with common sense in this case. Also an interpretation of
projections of p-adic space-time sheets to an integer lattice of real Minkowski space M4 in terms
of generalized Boolean functions emerges naturally so that M4 projections of p-adic space-time
would represent Boolean functions for a logic with n taboos.

3.3.1 2-adic valued functions of 2-adic variable and Boolean functions

The binary coefficients fnk in the 2-adic expansions of terms fnxn in the 2-adic Taylor expansion
f(x) =

∑
n=0 fnx

n, assign a sequence of truth values to a 2-adic integer valued argument x ∈
{0, 1, ..., 2N} defining a sequence of N bits. Hence f(x) assigns to each bit of this sequence a
sequence of truth values which are ordered in the sense that the truth values corresponding to bits
are not so important p-adically: much like higher decimals in decimal expansion. If a binary cutoff
in N :th bit of f(x) is introduced, BM -valued function in BN results, where B denotes Boolean
algebra fo 2 elements. The formal generalization to p-adic case is trivial: 2 possible truth values
are only replaced by p truth values representable as 0, ..., p− 1.

3.3.2 p-Adic valued functions of p-adic variable as generalized Boolean functions

One can speak of a generalized Boolean function mapping finite sequences of p-valued Boolean
arguments to finite sequences of p-valued Boolean arguments. The restriction to a subset x = kpn,
k = 0, ..., p − 1 and the replacement of the function f(x) with its lowest pinary digit gives a
generalized Boolean function of a single p-valued argument. If f(x) is invariant under the scalings
by powers of pk, one obtains a hologram like representation of the generalized Boolean function
with same function represented in infinitely many length scales. This guarantees the robustness of
the representation.

The special role of 2-adicity explaining p-adic length scale hypothesis p ' 2k, k integer, in
terms of multi-p-acidic fractality would correlate with the special role of 2-valued logic in the
world order. The fact that all generalizations of 2-valued logic ultimately involve 2-adic logic at
the highest level, where the generalization is formulated would be analog of p-adic length scale
hypothesis.

32



3.3.3 p = 2k − n-adicity and Boolean functions with taboos

It is difficult to assign any reasonable interpretation to p > 2-valued logic. Also the generalization
of logical connectives AND and OR is far from obvious. In the case p = 2k − n favored by the
p-adic length scale hypothesis situation is however different. In this case one has interpretation in
terms Bk with n Boolean statements dropped out so that one obtains what might be called B̂k.
Since n is odd this set is not invariant under Boolean conjugation so that there is at least one
statement, which is identically true and could be called taboo, axiom, or dogma: depending on
taste. The allowed Boolean functions would be constructed in this case using standard Boolean
functions AND and OR with the constraint that taboos are respected: in other words, both the
inputs and values of functions belong to B̂k.

A unique manner to define the logic with taboos is to require that the number of taboos is
maximal so that if statement is dropped its negation remains in the logic. This implies n > Bk/2.

3.3.4 The projections of p-adic space-time sheets to real imbedding space as repre-
sentations of Boolean functions

Quantum classical correspondence suggests that generalized Boolean functions should have space-
time correlates. Since Boolean cognition involves free will, it should be possible to construct
space-time representations of arbitrary Boolean functions with finite number of arguments freely.
The non-determinism of p-adic differential equations guarantees this freedom.

p-Adic space-time sheets and p-adic non-determinism make possible to represent generalization
of Boolean functions of four Boolean variables obtained by replacing both argument and function
with p-valued pinary digit instead of bit. These representations result as discrete projections of
p-adic space-time sheets to integer valued points of real Minkowski space M4. The interpretation
would be in terms of 4 sequences of truth values of p-valued logic associated with a finite 4-D
integer lattice whose lattice points can be identified as sequences of truth values of a p-valued logic
with a set of p-valued truth value at each point so that in the 2-adic case one has map B4M → B4N .
Here the number of lattice points in a given coordinate direction of M4 is M and N is the number
of bits allowed by binary cutoff for CP2 coordinates. For p = 2k − n representing Boolean algebra
with n taboos, the maps can be interpreted as maps B̂4M → B̂4N .

These lattices can be seen as subsets of rational shadows of p-adic space-time sheets to Minkowski
space. The condensed matter analog would be a lattice with a a sequence of p-valued dynamical
variables (sequence of bits/spins for p = 2) at each lattice point. At a fixed spatial point of M4

the lowest bits define a time evolution of a generalized Boolean function: B → B.
These observations support the view that intentionality and logic related cognition could per-

haps be regarded as 2-adic aspects of consciousness. The special role of primes p = 2k − n could
also be understood as special role of Boolean logic among p-valued logics and p = 2k − n logic
would correspond to Bk with n axioms representing logic respecting a belief system with n beliefs.
Recall that multi-p p-adic fractality involving 2-adic fractality is possible for the solutions of field
equations and explains p-adic length scale hypothesis.

Most points of the p-adic space-time sheets correspond to real points which are literally infinite
as real points. Therefore cognition would be in quite literal sense outside the real cosmos. Perhaps
this is a direct correlate for the basic experience that mind is looking the material world from
outside.

3.3.5 Connection with the theory of computational complexity?

There are interesting questions concerning the interpretation of four generalized Boolean argu-
ments. TGD explains the number D = 4 for space-time dimensions and also the dimension of
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imbedding space. Could one also find explanation why d = 4 defines special value for the number
of generalized Boolean inputs and outputs?

1. Could the general theory of computational complexity allow to understand d = 4 as a maxi-
mum number of inputs and outputs allowing the computation of something related to these
functions in polynomial time? For instance, complexity theorist could probably immediately
answer following questions. Could the computation of the 2-adic values of CP2 coordinates
as a function of 2-adic M4 coordinates expressed in terms of fundamental logical connectives
take a time which is polynomial as a function of the number of N4 pinary digits of M4

coordinates and N4 pinary digits of CP2 coordinates? Is this time non-polynomial for Md

and Sd, Sd d-dimensional internal space, d > 4. Unfortunately I do not possess the needed
complexity theoretic knowhow to answer these questions.

2. The same question could make sense also for p > 2 if the notion of the logical connectives
and functions generalizes as it indeed does for p = 2k − n. Therefore the question would be
whether p-adic length scale hypothesis and dimensions of imbedding space and space-time
are implied by a polynomial computation time? This could be the case since essentially a
restriction of values and arguments of Boolean functions to a subset of Bk is in question.

3.3.6 Some calculational details

In the following the details of p-adic non-determinism are described for a differential equation of
single p-adic variable and some comments about the generalization to the realistic case are given.

1. One-dimensional case

To understand the essentials consider for simplicity a solution of a p-adic differential equation
giving function y = f(x) of one independent variable x =

∑
n≥n0

xnp
n.

1. p-Adic non-determinism means that the initial values f(x) of the solution can be fixed arbi-
trarily up to N + 1:th pinary digit. In other words, f(xN ), where xN =

∑
n0≤n≥N xnp

n is
a rational obtained by dropping all pinary digits higher than N in x =

∑
n≥n0

xnp
n can be

chosen arbitrarily.

2. Consider the projection of f(x) to the set of rationals assumed to be common to reals and
p-adics.

i) Genuinely p-adic numbers have infinite number of positive pinary digits in their non-
periodic expansion (non-periodicity guarantees non-rationality) and are strictly infinite as
real numbers. In this regime p-adic differential equation fixes completely the solution. This
is the case also at rational points q = m/n having infinite number of pinary digits in their
pinary expansion.

ii) The projection of p-adic x-axis to real axis consists of rationals. The set in which solution
of p-adic differential equations is non-vanishing can be chosen rather freely. For instance,
p-adic ball of radius p−n consisting of points x = pMy, y 6= 0, |y|p ≤ 1, can be considered.
Assume N > M . p-Adic nondeterminism implies that f(q) for q =

∑
M≤n≤N xnp

n, can be
chosen arbitrarily. For M ≥ 0 q is always integer valued and the scaling of x by a suitable
power of p always allows to get a finite integer lattice at x-axis.

iii) The lowest pinary digit in the expansion of f(q) in powers of p in defines a pinary digit.
These pinary digits would define a representation for a sequence of truth values of p-logic.
p = 2 gives the ordinary Boolean logic. It is also interpret this pinary function as a function
of pinary argument giving Boolean function of one variable in 2-adic case.
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2. Generalization to the space-time level

This picture generalizes to space-time level in a rather straight forward manner. y is replaced
with CP2 coordinates, x is replaced with M4 coordinates, and differential equation with field
equations deducible from the Kähler action. The essential point is that p-adic space-time sheets
have projection to real Minkowski space which consists of a discrete subset of integers when suitable
scaling of M4 coordinates is allowed. The restriction of 4 CP2 coordinates to a finite integer lattice
of M4 defines 4 Boolean functions of four Boolean arguments or their generalizations for p > 2.
Also the modes of the induce spinor field define a similar representation.

3.4 Fibonacci numbers, Golden Mean, and Jones inclusions

The picture discussed above does not apply in the case of Golden Mean since powers of Φ do
not have any special role for the algebraic extension of rationals by

√
5. It is however possible to

understand the emergence of Fibonacci numbers and Golden Mean using quantum classical corre-
spondence and the fact that the Clifford algebra and its sub-algebras associated with configuration
space spinors corresponds to the so called hyper-finite factor of type II1 (configuration space refers
to the ”world of classical worlds”).

3.4.1 Infinite braids as representations of Jones inclusions

The appearance of hyper-finite factor of type II1 at the level of basic quantum tGD justifies the
expectation that Jones inclusions N ⊂ M of these factors play a key role in TGD Universe. For
instance, subsystem system inclusions could induce Jones inclusions.

For the Jones inclusion N ⊂ M M can be regarded as an N -module with fractal dimension
given by Beraha number Bn = 4cos2(π/n), n ≥ 3 or equivalently by the quantum group phases
exp(iπ/n). B5 satisfies B5 = 4cos2(π/5) = Φ2 = Φ + 1 so that the special role of n = 5 inclusion
could explain the special role of Golden Mean in Nature.

Hecke algebras Hn, which are also characterized by quantum phase q = exp(iπ/n) or the
corresponding Beraha number Bn = 4cos2(π/n), characterize the anyonic quantum statistics of
n-braid system. Braids are understood as threads which can get linked and define in this manner
braiding. Braid group describes these braidings. Like any algebra, Hecke algebra Hn can be
decomposed into a direct sum of matrix algebras. Fibonacci numbers characterize the dimensions
of these matrix algebras for n = 5. Interestinglyt, topological quantum computation is based on
the idea that computer programs can be coded into braidings. What is remarkable is that n = 5
characterizes the simplest universal quantum computer so that Golden Mean could indeed have
very deep roots to quantum information processing.

The so called Bratteli diagrams characterize the inclusions of various direct summands of Hk

to direct summands Hk+1 in the sequence H3 ⊂ H4 ⊂ ... ⊂ Hk ⊂ ... of Hecke algebras. Essentially
the reduction of the representations of Hk+1 to those of Hk is in question. The same Bratteli
diagrams characterize also the Jones inclusions N ⊂ M of hyper-finite factors of type II1 with
index n as a limit of a finite-dimensional inclusion. Thus Jones inclusion can be visualized as a
system consisting of infinite number of braids. In TGD framework the braids could be represented
by magnetic flux lines or flux tubes.

3.4.2 Logarithmic spirals as representations of Jones inclusions

The inclusion sequence for Hecke algebras has a representations as a logarithmic spiral. The angle
π/5 can be identified as a limit for angles φn with cos(φn) = Fn+1/2Fn assignable to orthogonal

triangle with hypothenuse 2Fn and short side Fn+1 and
√

4F 2
n − F 2

n+1. Fibonacci sequence defines
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via this prescription a logarithmic spiral as a symbolic representation of the n = 5 Jones inclusion
representable also in terms of infinite number of braids.

3.4.3 DNA as a topological quantum computer?

Quantum classical correspondence encourages to think that space-time geometry could define a
correlate for Jones inclusions of hyper-finite factors of Clifford sub-algebras associated with Clifford
algebra of configuration space spinors. The appearance of Fibonacci series in living systems could
represent one example of this correspondence. The angle π/10 closely related to Golden Mean
characterizes the winding of DNA double strand. Could this mean that DNA allows to realize
topological quantum computer programs as braidings? A possible realization would be based on
the notion of super-genes [L2], which are like pages of a book identified as magnetic flux sheets
containing genomes of sequences of cell nuclei as text lines. These text lines would represent line
through which magnetic flux lines traverse.

The braiding of magnetic flux lines (or possibly flux sheets regarded as flattened tubes) would
define the braiding and the particles involved would be anyons obeying dynamics having quan-
tum group SU(2)q, q = exp(iπ/5), as its symmetries. The anyons could be assigned with DNA
nucleotides or triplets.

TGD predicts also different kind of new physics to DNA double strand. So called HN -atoms
consist of ordinary proton an N dark electrons at space-time sheet which is λ-fold covering of
space-time sheet of ordinary hydrogen atom. The effective charge of HN -atom is 1 − N/λ since
the fine structure constant for dark electrons is scaled down by 1/λ. Hλ-atoms have full electron
shell and are therefore exceptionally stable. The proposal is that Hλ-atoms could replace ordinary
hydrogen atoms in hydrogen bonds [L2, L4]. Single base pair corresponds to 2 or 3 hydrogen
bonds. The question is whether λ-hydrogen atom might somehow relate to the anyons involved
with topological quantum computation.

Anyons could be dark protons resulting in the formation dark hydrogen bond in the fusion of
HN atom and its conjugate HNc

, Nc = λ−N . Neutron scattering and electron diffraction suggest
that 1/4:th of protons of water are in dark phase in attosecond time scale [41], and the model
explains this number.

4 Quantum criticality and how to express it algebraically?

There are two problems related to the precise formulation of quantum TGD. The first, rather
longstanding, problem is how to precisely define quantum criticality concept. Second problem,
is the normal ordering anomaly implying non-conservation of the isometry currents associated
with the modified Dirac action for the induced spinor fields. The assumption that modified Dirac
action is the fundamental variational principle could solve these problems to some degree. A
further, technical problem is to calculate the value of the Kähler coupling strength determined by
the requirement of quantum criticality or equivalently, to deduce the value of the Kähler coupling
strength from the modified Dirac action. The notion of the coupling constant evolution defined
in terms of infinite primes combined with the notion of the fermionic effective action allows to
”deduce” the dependence of the Kähler coupling strength on infinite prime characterizing the
sector of the configuration space.

The understanding of the coupling constant evolution of Kähler coupling strength does not
of course yet provide real mathematical description of quantum criticality. The cancellation of
loop corrections is very attractive formulation for the notion of quantum criticality, and one might
hope that this notion would allow an elegant algebraic formulation. The work with Hopf algebras
and related structures indeed led to a proposal for a formulation of this kind [C5]. The notion
of Platonia inspired the idea that Feynman diagrams in some suitably generalized sense could be
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regarded as characterizing computations and that two computations containing loops would be
equivalent to those without loops by basic axioms of the associated algebra. Certain basic axiom
relating the product and co-product of Hopf algebras indeed has a graphical representation stating
that a box diagram is equivalent with a tree diagram and it is easy to identify axioms implying
that also the diagrams with loops associated with vertex corrections and self energy corrections
are equivalent to tree diagrams. The connection with ordinary Feynman diagrams emerges from
the fact that algebraic diagrams involve also vacuum lines identifiable in terms of identity element.

4.1 The value of Kähler coupling strength from quantum criticality

Kähler coupling strength is the only free parameter of the theory. The hypothesis that TGD
corresponds to a quantum critical system means that αK is mathematically analogous to critical
temperature and provides a possible solution to the problem of fixing the value of αK . This
argument with some additional physical inputs has led to a rather detailed information about
Kähler coupling strength.

1. Already the reduction of the classical action to Kähler action implies criticality in a well
defined sense as is clear from the emergence of the huge vacuum degeneracy. This criticality
however occurs for all values of αK and is actually the most characteristic feature of TGD.
A good guess is that quantum criticality corresponds to a value of αK such that Kähler
magnetic/electric field configurations dominate and below/above criticality in the vacuum
functional. The most obvious interpretation of the quantum criticality is that below criticality
magnetic field configurations dominate whereas above criticality electric fields are dominant.

2. Classical non-determinism is the characteristic feature of the Kähler action. This means
that the absolute minima of the Kähler action associated with a given 3-surface Y 3 at the
light cone boundary are degenerate. Analogous degeneracy is encountered in the thermo-
dynamics of strings: in Hagedorn temperature TH the degeneracy factor g(E) of a given
energy eigen state becomes roughly equal to the inverse of the Boltzmann weight at critical
temperature: g(E) ∼ exp(E/TH). This motivates the guess that the number Nd(Y 3) of the
degenerate space-time surfaces X4(Y 3) associated with Y 3 is in a good approximation given
by Nd(Y 3) ∼ exp(−Kcr(Y 3)), where Kähler function is evaluated for a critical temperature.
The hypothesis is that Kähler coupling strength corresponds to this maximum value of the
Kähler coupling strength above which theory is not well defined. At criticality 3-surfaces for
which Kähler action has arbitrarily large negative value can appear in states with consid-
erable probability and the structure of the theory becomes richest possible. The strongest
motivation for this hypothesis comes from TGD inspired theory of consciousness, which al-
lows to interpret Nd as a number characterizing cognitive resources of a given 3-surface:
quantum critical universe is the most intelligent and most interesting universe possible in
TGD framework.

This argument seems to allow only single value of αK . Situation is however not so simple
since possible dependence of the number of quantum fluctuating degrees of freedom on zero
modes allows dependence of αK on zero modes too.

3. The fundamental variational principle defined by the modified Dirac action contains no free
parameters since the anti-commutation relations of the induced spinor field are fixed by re-
quiring that various currents and super-currents generate super-canonical algebra. If Kähler
action indeed results from the normal ordering of the Dirac action, the possible values of the
Kähler coupling strength are in principle expected to depend on the sector DP of configu-
ration space labelled by infinite prime P if the proposed interpretation of infinite primes is
sensible [E3]. It is tempting to equate the presence of the super-symmetry with quantum
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criticality since the addition of a separate bosonic term to the action in general spoils super-
conformal symmetry by allowing solutions of the modified Dirac equation which are not
analogous to massless solutions but contain a ’mass term’ resulting from the non-vanishing
divergence of the vector field defined by the modified gamma matrices. Clearly this term
defines a length scale and means breaking of the scale invariance characteristic for both
super-symmetry and criticality.

4.2 Is G or αK RG invariant?

The value of Kähler coupling strength is analogous to a critical temperature. The simplest option
is that there is just single universal value. This however leads to problems with gravitational
constant solved if one assumes that G is RG invariant. Both options will be discussed in the
sequel.

The quantization of Planck constant assignable to M4 degrees of freedom as a multiple of
the integer n in quantum phase q = exp(iπ/n) characterizing Jones inclusions in CP2 degrees of
freedom [A9] implies that αK is scaled down by 1/n in a phase with h̄ = nh̄0 = n. Notice that only
g2
K/4π is visible in Kähler action and in the following αK is identified as this parameter regarding
h̄0 = 1 as the basic unit.

4.2.1 αK when G is RG invariant

The following argument allows to deduce the dependence of αK on the p-adic prime p assuming
RG invariance of G.

1. The discrete p-adic evolution of the Kähler coupling strength follows from the requirement
that gravitational coupling constant is renormalization group invariant. When combined
with the requirement that the exponent of CP2 action is a power of prime (this is essential
for p-adicization by algebraic continuation), the argument would give

1
αK(p)

=
4
π
log(K2) , K2 =

∏
q=2,3,...23

q × p

with αK(p = M127) ' 136.5585 and α/αK ' .9965. The deviation from fine structure
constant at the same length scale is .35 per cent (1/αem = 137.0360211). Note that M127

corresponds to electron length scale. If the action is a rational fraction of CP2 action, and
the extension of p-adic numbers is by an appropriate root of p is enough to guarantee the
existence of the Kähler function.

The value of the ratio K = R√
G

of CP2 length scale to Planck length is K = k×104, k = 1.375
to be compared with the value k = 1.376 deduced from electron mass. The deviation is .3
per cent and the unknown second order corrections to the masses allow a deviation of this
magnitude.

The predicted value of the inverse of the Kähler coupling strength at p-adic length scale
p = M127 (electron length scale) is

1
αK(p = M127)

= 136.5585 ,

which deviates from fine structure constant at the same length scale by .35 per cent (1/αem =
137.0360211). Note however that the evolution of Kähler coupling strength is much faster
than the evolution of the electromagnetic coupling constant strength and a sheer coincidence
might be in question. The value of the Kähler coupling strength for p = 29 is given by
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1
αK(p=23) = 28.7630 ,

αK(p=M127)
αK(p=23) = .2106 .

What is interesting is that the primes pi appearing in the formula for K2 are the nine smallest
primes and that the total number of primes is 10. The p-adic prime p labelling the sector of
the configuration space is analogous to a time like dimension whereas the nine primes pi are
analogous to nine space-time like dimensions. Furthermore, the values of pi are smaller than
24. These observations suggest a number-theoretic connection with super string models.

2. One can consider also an alternative ansatz based on the requirement that Kähler function
is a rational number rather than a logarithm of a power of integer K2. This requires an
extension of p-adic numbers involving some root of e and a finite number of its powers. SR
must be rational valued using Kähler action SK(CP2) = 2π2 of CP2 type extremal as a
basic unit. In fact, not only rational values of Kähler function but all values which differ
from a rational value by a perturbation with a p-adic norm smaller than one and rationally
proportional to a power of e or even its root exist p-adically in this case if they have small
enough p-adic norm. The most general perturbation of the action is in the field defined by
the extension of rationals defined by the root of e and algebraic numbers.

Since CP2 action is rationally proportional to π2, the exponent is rational if 4παK satisfies
the same condition. If the conjecture log(p) = q1(p)exp [q(p2)] /π holds , then the earlier ansatz
1/αK(p) = (4/π)log(K2) does not guarantee this, and 4/π must be replaced with a rational
number Q ' 4/π. The presence of log(K2), K2 product of primes, is well motivated also in this
case because it gives the desired 1/π factor.

This gives for the Kähler function the expression

K = Q

[
q1(p)exp [q2(p)] +

∑
i

q1(qi)exp [q2(qi)]

]
S

SCP2

. (7)

exp(K) exists p-adically only provided that K has p-adic norm smaller than one. For given p this
poses strong conditions unless one assumes that the condition S/SCP2 = pnr, r rational. In the
case of many-particle state of CP2 extremals this would mean that particle number is divisible by
a power of p.

For single CP2 extremal, the fact that p cannot divide q1(p) means that either Q contains
a power of p or the sum of terms is proportional to a power of p. Obviously this condition is
extremely strong and allows only very few primes. One might wander whether this could provide
the first principle explanation for p-adic length scale hypothesis selecting primes p ' 2k, k integer,
and with prime power powers being preferred.

Since k = 137 (atomic length scale) and k = 107 (hadronic length scale) are the most important
nearest p-adic neighbors of electron, one could make a free fall into number mysticism and try the
replacement 4/π → 137/107. This would give αK = 137.3237 to be compared with α = 137.0360:
the deviation from α is .2 per cent (of course, αK need not equal to α and the evolutions of these
couplings are quite different). Thus it seems that log(p) = q1exp(q2)/π hypothesis is supported
also by the properties of Kähler action and might lead to an improved understanding of the origin
of the mystery prime k = 137. Of course, one must be extremely cautious with the numerics.
For instance, one could replace 137/107 with the ratio of 137/log(M107 and in this case the M107

would become an ”easy” prime.
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4.2.2 What if αK is RG invariant?

Electro-weak and color coupling strenghs should be proportional to αK . The p-adic evolution
of αK is however rather fast and makes it difficult to understand the much slower electro-weak
coupling constant evolution. If αK is RG invariant the situation changes.

The previous argument goes through also when αK is RG invariant by putting p = M127 so
that K would we constant and the primes p = 2, 3....23 and M127 would be exceptional (M127 is
certainly exceptional). This option predicts that gravitational constant is proportional to L2

p. The
observed value corresponds to M127. This picture is sensible only if one assumes that gravitational
interactions are mediated by space-time sheets characterized by Mersenne primes. Since M127

is the largest Mersenne prime for which the p-adic length scale is not super-astronomical, the
strongest observable-to-us gravitational interaction would correspond to M127 so that G would be
effectively RG invariant.

The resulting strongly predictive model for electro-weak and color coupling evolution reduces
the evolution of color coupling strength αs to that of electro-weak U(1) coupling strength αU(1)

and its success supports this picture [A9]. The model favors the value αK = αU(1)(M127) =
[αem/cos2(θW )](M127) ' 104. In the recent situation one must however keep mind open and allow
the possibility that αK can depend on p.

4.3 The bosonic action defining Kähler function as the effective action
associated with the induced spinor fields

One could define the classical action defining Kähler function as the bosonic action giving rise to
the divergences of the isometry currents. In this manner bosonic action, especially the value of the
Kähler coupling strength, would come out as prediction of the theory containing no free parameters.
Since infinite primes have space-time surfaces as their geometric correlates, the dependence could
be through the infinite prime P characterizing the space-time surfaces X4(X3) in sector DP of the
configuration space.

Thus it is assumed that the action SB defining Kähler function as its absolute minimum is
defined by the functional integral over the Grassmann variables for the exponent of the massless
Dirac action. Formally the functional integral is defined as

exp(SB(X4)) =
∫
exp(SF )DΨDΨ̄ ,

SF = Ψ̄
[
Γ̂αD→α −D←α Γ̂α

]
Ψ
√
g .

(8)

Formally the bosonic effective action is expressible as a logarithm of the fermionic functional
determinant resulting from the functional integral over the Grassmann variables

SB(X4) = log(det(D)) ,

D = Γ̂αD→α . (9)

The rigorous definition of this determinant has been already discussed in [B4]. The sum over the
logarithms of the eigen values in turn can be identified as the derivative of the logarithm of the
generalized Zeta function

ζF (s) ≡
∑
n

λ−sn ,
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DΨn = λnoΨn ,

o = nαγα , [D, 0] = 0 . (10)

at s = 0:

SB(X4) = log(det(D)) =
∑
n

log(λn) = − d

ds
log(ζF )(s,X4) . (11)

The vector nα identified as the gradient of a coordinate xN normal to X3. As shown in [B4],
the hermiticity of the modified Dirac operator is guaranteed if X3 is minimal hyper-surface or if
Kähler action density LK vanishes at X3.

The vanishing of the normal components Tnk of the conserved currents associated with the
isometries of H is necessary in order to have effective 3-dimensionality in the sense that the
modified Dirac equation contains only derivatives acting on X3 coordinates. The reduction to
the boundary and the dependence on the normal derivatives of the imbedding space coordinates
realizes quantum gravitational holography.

The definition relying on the generalized Zeta function allows to circumvent the possible tech-
nical difficulties related to the precise definition of the Grassmannian functional integral and of
the functional determinant since the possibly divergent sum over the logarithms of the eigenvalues
can be identified as the derivative of Zeta function at s = 0, which can be defined by analytically
continuing the zeta function outside the domain where the definition in terms of the eigenvalues
works.

The eigenvalues of the modified Dirac operator vanish for the vacuum extremals but the Dirac
determinant equals to one since zero eigenvalues by definition do not contribute to it. In this
case the determinant is well-defined without regularization, which suggests that Zeta function
regularization might not be needed at all. The product of the eigenvalues must approach to unity
for non-vacua at the limit SK(X4) = 0.

4.3.1 The regularization of the ordinary Dirac determinant as a guideline

There are good reasons to expect that time translations are replaced by scalings in TGD framework
and the eigenvalues of the modified Dirac operator can be interpreted as scaling momenta. This
does not however yet explain the required partially broken λ ↔ 1/λ symmetry for the operator
determining the Dirac determinant. The E ↔ −E symmetry of the ordinary Dirac operator
transforming positive energy solutions to their negative energy counterparts looks much more
natural.

The partially broken λ ↔ 1/λ symmetry does not seem plausible for the modified Dirac op-
erator itself. The regularization of the ordinary Dirac determinant by dividing it by the Dirac
determinant of the free Dirac operator however suggests how to achieve this symmetry. Causal
determinants involve always pairs of maximal strictly deterministic space-time regions, and the
natural hypothesis is that the ratio of the Dirac determinants of the two adjacent deterministic
space-time regions contains information about their Kähler actions.

The assumption that the modified Dirac operators D+ and D− of the adjacent deterministic
regions commute at the causal determinant and their spectra coincide apart from a finite number
of eigenvalues, is a strong statement about the character of the classical non-determinism. λ→ 1/λ
approximate symmetry would be realized for D+D

−1
− since most of its eigen values would equal to

unity.
If the asymmetric eigenvalues deviate by the exponent of the Kähler action for the deterministic

region, Dirac determinant gives the exponent for the difference of Kähler actions of the two regions,
and one can identify the result as the ratio of exponents of Kähler actions for the two regions
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identifiable as exponents of Kähler function Nothing hinders from defining the regularized Dirac
determinant for a given region as a corresponding finite exponent.

This approach has several nice features.

1. The construction brings in mind the difference bundle construction giving rise to a non-trivial
gerbe in turn defining a regularized Dirac determinant [34] as the multiplicative analog of
gauge potential for which curvature form corresponds formation of the ratio of determinants
and gives the ratios of determinants correctly. One could see this approach as the deeper one
and Dirac determinants as a mere calculational trick to deduce the vacuum functional and
Kähler action.

2. The value of the Dirac determinant does not depend on the normalization of the modified
Dirac operator if the non-vanishing eigenvalues are in one-one correspondence.

3. There is also a consistency with the number theoretical conjectures about the relationship
between Kähler coupling strength and gravitational constant.

4.3.2 Could generalized index theorems provide information about the spectrum?

The presence of only a finite number of ”active” eigen values for a given causal determinant
enhances the hopes that information about the exponent of Kähler function could be deduced
by using a generalization of index theorems [33]. Ordinary index theorems typically give the
number of solutions DΨ = 0 of the modified Dirac operator not expressible in the form Ψ = DΨ1

(covariantly constant right handed neutrino spinor with two spin directions is one example) in
terms of topological invariants of the manifold.

For the option c) the conservative view would be that the generalized index theorem expresses
the number of the eigenvalues which become vanishing in the transition between the adjacent
regions. A more radical interpretation is that index theorem expresses the number of those solutions
of the modified Dirac operators in the adjacent deterministic regions which correspond to different
eigen values in terms of some natural topological invariant associated with the causal determinant.

The Chern-Simons action associated with the induced Kähler form defines a 3-connection form
of 2-gerbe [D1]. The more than obvious guess is that its value for a given causal determinant
gives the number of ”active” eigen values with sign telling the sign of asymmetry. Presumably
the integer value of C-S action corresponds to a surface for which the projection of the causal
determinant to CP2 is many-to-one map.

The vanishing of the net C-S charge does not imply the vanishing of the Kähler function
since only the value of the Kähler action for a particular maximal strictly non-deterministic region
follows from the spectral asymmetry. If the value of entire Kähler function were in question Kähler
function would be non-vanishing only when the dimension D of CP2 projection is D = 4 in the
interior of the space-time sheet.

If the CP2 projection of the causal determinant is 2-dimensional, the spectral asymmetry
would be trivial. The Kähler function could be non-vanishing for the solutions for which space-
time sheets have D = 3 everywhere. The regions of the space-time sheet with D = 4 (such as CP2

extremals representing elementary particles and non-asymptotic regions of sheets having D = 3
asymptotically) would certainly contribute to the Kähler function.

In this approach the values of the Kähler coupling strength and gravitational coupling strength
(and even quantum criticality itself equated with super-symmetry) are predicted directly, rather
than being input parameters and the theory is essentially unique without any additional assump-
tions.
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4.4 An attempt to evaluate the Kähler coupling strength from the fermionic
determinant in terms of infinite primes

As already found, the notion of infinite primes provides estimate for the Kähler coupling strength
and its is interesting to see whether the same estimate follows from the fermionic determinant
under reasonable assumptions. The hypothesis that bosonic action is the logarithm of the action
defined by the partition function associated with the induced Dirac action, makes it possible to
identify it as the ordinary derivative of the Zeta function ζD(s) =

∑
λ λ

s of the modified Dirac
operator at s = 0. That no zeta function regularization is needed would be the deep meaning of
the conformal invariance at light like causal determinants.

By the previous arguments bosonic action SB should be Kähler action and by the broken
λ→ 1/λ symmetry only finite number of eigen values contribute to the determinant of the operator
D+D

−1
− . One ends up with the hypothesis that the eigenvalues contributing to the determinant

correspond to a finite set of primes and thus to a fermionic infinite prime.
The number theory inspired idea which originally led to the formulas for the Kähler coupling

constant and gravitational constant is that there is a connection with arithmetic quantum field
theory. This means that the logarithm of the Dirac determinant can be interpreted as a ”thermal
energy” for an arithmetic quantum field theory at infinite temperature limit, that is as the loga-
ritmic derivative −dlog(ZF (s,X4))/ds of the partition function ZF (s,X4) such that only a finite
product of number theoretic partition functions for number theoretic fermions contributes at the
limit s → 0. The stronger requirement ζD(s) = −log(ZF (s,X4)) can be considered but is not
necessary. The infinite prime would characterize the non-thermalized modes. The broken λ→ 1/λ
symmetry would correspond to the broken E → −E symmetry in the arithmetic quantum field
theory and makes sense only if one considers the TGD counterpart for the regularization of the
Dirac determinant discussed already in the chapter ”Configuration Space Spinor Structure”.

4.4.1 A model for the Dirac Zeta function as a product of number theoretic partition
functions

The decomposition of the configuration space to sectors DP labelled by infinite prime P and
the experience from the construction of infinite primes suggest strongly the hypothesis that the
fermionic zeta function ζD(s = 0, X4) is at least at the limit s → 0, very closely related with
the partition function ZF (s,X4) of a generalized arithmetic quantum field theory involving both
fermionic and bosonic labelled by primes and possessing super-symmetry. This means that ZF
must have interpretation as a partition function constructible as a product of the bosonic and
fermionic single particle partition functions Zp(B, s) and Zp(F, s) serving as the building blocks
of the Riemann zeta function ζ(s) and its fermionic counterpart. The requirements that the
coupling constant evolution of the Kähler coupling strength as a function of p-adic prime is the
evolution forced by the renormalization group invariance of the gravitational constant and that
G has value consistent with the value implied by elementary particle mass calculations, fix the
scenario completely.

The logarithm of the fermionic determinant allows a formal physical interpretation as a ”ther-
mal energy” at the infinite temperature limit for an ’arithmetic’ system for which the ten modes
2 ≤ pi ≤ 23 and p defining an infinite purely fermionic prime are thermalized. The requirement that
the bosonic effective action is finite, forces to use fermionic partition functions ZF (p, s) = 1 + p−s

rather than bosonic partition functions Zp(B, u) = 1/(1 − p−s) as one might expect. This moti-
vates the guess that fermionic determinant is expressible as a logarithmic derivative of a number
theoretic fermionic partition function at s = 0 for a system in which only the modes pi and p are
effectively present.

If infinite prime P characterizes the ground state it should somehow determine the value of the
fermionic determinant and thus the value of the Kähler coupling strength. Obviously P should
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characterize the exceptional primes pi and p, and could thus be an infinite prime generated from
X+1 or X−1 by adding number theoretic fermions in the modes p and pi. The simplest assumption
is that all other fermionic and all bosonic modes are thermalized with identical oscillator frequencies
so that the fermion modes of type X + 1 and antifermion modes of type X − 1 compensate each
other in the fermionic determinant and only finite number of modes for which the difference of the
theoretic frequencies is proportional to the difference of Kähler actions for the adjacent maximal
deterministic regions, remain visible.

1. The identification of the frequency spectrum

The basic harmonic oscillator frequencies ωp associated with the number theoretic fermionic
and bosonic oscillators are given by

ω(p) = ω0log(p) ,

ω0 = 2−#{pi}−1SK(X4
+)− SK(X4

−)
SK(CP2)

. (12)

The multiplication by the factor 2−#{pi}−1, where #{pi} = 9 is the number of the small bosonic
primes pi present in the infinite prime P , is necessary in order to obtain the correct normalization
of the Kähler coupling strength. ω0 is proportional to the difference of Kähler actions for the
maximal deterministic regions meeting at the causal determinant. That CP2 action serves as a
natural frequency scale is a guess motivated by the fundamental role of CP2 type extremals.

The eigenvalues of the operator D+D
−1
− formed from the operators D+ and D− assumed to

commute, are exponentials of the thermalized single particle energies of the arithmetic system
λp = pω0 and most of them are equal to one.

2. Number theoretic partition function as a product of number theoretic fermionic partition
functions

The guess is that the fermionic determinant DET (D+D
−1
− corresponds to a logarithmic deriva-

tive at infinite temperature limit for the product of fermionic partition functions for the small
’background’ primes pi and prime p:

ZF (s,X4) =
∏

2≤pi≤pmax

Zpi
(F, u)k(pi) × Zp(F, u)k(p) ,

Zp(F, u) = 1 + p−u ,

u = ω0s . (13)

The parameter s is analogous to the inverse of temperature: s↔ 1/T . The values of the integers
k(pi) and k(p) turn out to be equal to unity.

This ansatz makes sense only in the sense that it gives fermionic determinant correctly so
that the equality ζD(s) = −log(ZF (s,X4)) need not hold true. The presence of an infinite num-
ber of eigenvalues compensating each other in the fermionic determinant is expected by general
considerations. If the transition between maximal deterministic regions modifies only a finite num-
ber of eigenvalues in the spectrum of the modified Dirac operator, the spectrum of the operator
D = D+D

−1
− constructed from the modified Dirac operators D+ and D− for the adjacent maximal

deterministic regions is invariant under the transformation λ → 1/λ apart from the eigen values
labelled by pi ∈ {2, .., 23} and p for which one has λ+(q)/λ−(q) = qω+−ω− , q ∈ {pi, p}. Other
eigenvalues would be equal to one. If Chern-Simons action gives the dimension of the spectral
asymmetry, the value of Chern-Simons charge for the causal determinant would be a multiple of
10.
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3. Expression for the bosonic action

The bosonic action SB can be deduced by using the general formula for the fermionic determi-
nant displayed already earlier:

SB(X4
+)− SK(X4

−) =
dζd(s)
ds |s=0

= −
d
[
log(ZF (s,X4)

]
ds |s=0

. (14)

The formula for the effective action is same as given by the direct renormalization group argument
for infinite primes:

SB(X4) =
π

8αK(p)
SK(X4)
SK(CP2)

,

1
αK(p)

=
4
π

(log(p) + log(K2)) ,

K2 =
R2

G
=

∏
2≤pi≤pmax

pi . (15)

Depending on whether αK or G is RG invariant p denotes M127 or arbitrary prime. pmax = 23
and k(pi) = k(p) = 1 predicts a correct value for gravitational constant as already found. k(pi) =
k(p) = 1 is very natural in the light of thermodynamical interpretation.

4. About the expression for the Kähler coupling strength

The expression of the Kähler coupling constant is deduced using the requirement that exponent
of CP2 Kähler action is power of integer. Number theoretical considerations of the chapter ”Fusion
of p-Adic and Real Variants of Quantum TGD to a More General Theory” support the expression
for the Kähler coupling strength as

1
αK(p)

=
137
107

(log(p) + log(K2)) (16)

obtained by the replacement 4/π → 137/107. The resulting expression is physically highly attrac-
tive since it would automatically raise the primes k = 137 and k = 107 corresponding to the length
scales of atomic physics and hadron physics to a very special position concerning p-adicization. In
this case one should replace the parameter ωp by

ωp → ω̂0log(p) , ω̂0 = π
4

137
107ω0 , ω0 = 2−#{pi}−1 SK(X4)

SK(CP2) . (17)

A possible justification for this replacement comes from the rationality of ωp becomes from the
ansatz log(p) = q1exp(q2)/π, q2(p1) 6= q2(p2) for p1 6= p2 ansatz discussed in the chapter ”Fusion
of p-Adic and Real Variants of Quantum TGD to a More General Theory”.

This replacement gives hopes of generalizing the procedure defining the fermionic determinant
also to the finitely extended p-adic case. p−ωs = exp(−ωps) exists in this case in a finite extension
of p-adic numbers p-adically for all rational numbers s which are divisible by p and if finite-
dimensional extensions of p-adics defined by e1/pn

are allowed they exists even more generally.
Thus the limiting procedure s→ 0 could be carried in p-adic number field by keeping s rational.

The real units defined by infinite primes could allow to define the exponent for almost all p-adic
primes. By definition infinite primes are not divisible by any finite prime. The simplest infinite
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prime is of form Π = 1 + X, X =
∏
i pi, where product is over all finite primes. More general

infinite primes are of form Π = mX/s+ns, s =
∏
i qi, n =

∏
i q
mi
i such that m =

∏
i p
ni
i and s have

no common factors. The interpretation could be as a counterpart for a state of a super-symmetric
theory containing fermion and mi bosons in the mode labelled by qi and ni bosons in the mode
labelled by pi.

One can extend rational numbers by the multiplicative group of real units obtained from in-
finite primes and powers of X. Real number 1 could carry infinite information resources in its
hidden structure! Note that the inclusion of the entire hierarchy of infinite primes gives even more
information storage capacity. The idea generalizes to the level of rational octonions and generalize
octonionic units could in principle code the quantum state of the universe to their structure. This
group is generated as products of powers of Y (n/m) = (n/m) × [X/Π(m/n)], which is a unit in
the real sense. Each Y (n/m) would define a subgroup of units and the power of Y (n/m) would
code for the number of factors of a given integer with unit counted as a factor. This would give a
hierarchy of integers with their p-adic norms coming as powers of p with the prime factors of m
and n forming an exception manifested in p-adic physics of cognition. Universe would ”feel” its
real or imagined state with its every point, be it a point of space-time sheet, of imbedding space,
or of configuration space.

4.4.2 The space-time interpretation for the special primes

A possible space-time interpretation for the presence of the small primes pi and prime p in the
active spectrum could be following.

1. The index theorem in its standard form for the product D+D
−1
− of the modified Dirac oper-

ators would suggest that these primes label modes for which the conformal transformation
inducing λ → 1/λ in symmetric case maps them to zero modes. The generalization of the
index theorem would tell the number of the eigenvalues which change at the causal determi-
nant and would be a highly non-trivial statement about the nature of the non-determinism.
Physically this option looks more plausible.

2. The simplest causal determinant corresponds to an elementary particle condensed at a space-
time sheet characterized by p, whereas more complex many particle causal determinants
would give in a good approximation integer power of the vacuum functional.

3. The simplest possibility is that topological condensation occurs in 10 steps CP2 type extremal
→ 2 → 3 · · · 23 → p so that a 10-level hierarchy of space-time sheets is involved. Various
symmetry breaking spinor zero modes would reside at these space-time sheets.

4. Without a proper normalization of the modified Dirac action one would have λ+(n) =
√

1/k×
nω and λ−(n) =

√
k × n−ω so that there product would give unity if the eigenvalues are in

1-1 correspondence.

If some eigenvalues go to zero some power of k results in Dirac determinant by the presence
of ”lonely” eigen values. In this case the requirement that the eigenvalues pω reduce to unit for a
vanishing Kähler action fixes the normalization. The simplest guess is that the un-renormalized
eigenvalues λ̂ and normalized eigenvalues λ are related by

λ̂ =
R2

G
λ ,

R2

G
=

∏
2≤pi≤23

pi . (18)
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4.4.3 The spectral asymmetry, infinite primes, negative energies, and electric-magnetic
duality

The interpretation of the ansatz for the fermionic determinant in terms of infinite primes would
be following.

1. The spectra of D+ and D− could correspond to the presence of the infinite primes gener-
ated from infinite vacuum primes X ± 1, X =

∏
k pk (product over all finite primes). The

asymmetric modes labelled by pi and p would be coded by a fermionic infinite prime of type
X − 1 or X + 1. In the arithmetic quantum field theory the asymmetric modes correspond
to a difference of frequency scales proportional to ω0 = ω+ − ω−.

2. The two families of infinite primes correspond to the two possible signs of scaling momentum
and ”arrow of scaling” in a complete analogy with the corresponding interpretation based
on time orientation in the case of ordinary Dirac operator.

3. The ”arrow of scaling” would mean that for the 10 exceptional primes generated from X+1 or
X− 1 the asymmetric modes for number theoretical fermions would have different frequency
scales. The ”arrow of scaling” would naturally correlate with whether the sub-cosmology is
expanding or contracting and thus with the arrow of the geometric and experienced time.

4. The two vacua correspond to the two possible quantizations in which creation and annihi-
lation operators change their role and would thus characterize positive and negative energy
matter predicted by quantum TGD. Phase conjugate photons behaving like negative energy
photons would indeed be negative energy matter.

5. If the configuration space is identified as the union of configuration spaces CH(a) (”sub-
cosmologies”) associated with all possible unions of future and past light cones M4

±(a) with
the dip any point a of M4 then M4

± naturally corresponds to X ± 1. Why the ontology of
TGD makes this picture natural is discussed in [E7].

6. An important implication is that Kähler coupling strength αK changes sign in the transfor-
mation λ → 1/λ induced by the transformation X − 1 ↔ X + 1 of vacuum infinite prime
and changing the direction of the ”scaling arrow”. The change of the sign would be a scaling
version of the g → 1/g duality relating weak and strong coupling regimes in gauge theories.
The absolute minimization of Kähler action would require that the extremals would be dom-
inated by Kähler magnetic resp. electric fields in the two phases so that the transformation
would actually correspond to the electric-magnetic duality suggested to be a basic symmetry
of quantum TGD. The two possible manners to define configuration space metric using in-
duced Kähler electric and magnetic fields would correspond to the two dually related phases
[B2, B3]. The earlier belief that duality acts trivially does not seem to be true. Note that
the requirement that the value of the Kähler function is finite for the entire universe requires
the vanishing of the amount of Kähler function per volume. This density must be vanishing
in both sectors.

7. It is possible to understand how the sub-cosmologies are created from vacuum at the moments
of ”big bangs” for sub-cosmologies in the fractal cosmology. Negative energy magnetic flux
tubes stable in the reverse time direction are time-reflected as positive energy magnetic
flux tubes which are unstable and decay to thicker magnetic flux tubes with a weaker field
strength. This picture justifies the TGD inspired cosmology in which positive and negative
energy sectors dissipate in different directions of geometric time. Both sectors give positive
contribution to the gravitational mass and negative energy sector would give the dominating
contribution to the dark gravitational energy.
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4.5 Equivalence of loop diagrams with tree diagrams from the axioms
of generalized ribbon category

Concerning the algebraic description of quantum criticality, the key idea is that generalized Feyn-
man diagrams are analogous to knot and link diagrams in the sense that they allow also ”moves”
allowing to identify classes of diagrams and that the diagrams containing loops are equivalent with
tree diagrams, so that there would be no summation over diagrams. This would be a generalization
of duality symmetry of string models.

TGD itself provides general arguments supporting same idea. The identification of absolute
minimum of Kähler action as a four-dimensional Feynman diagram characterizing particle reaction
means that there is only single Feynman diagram instead of functional integral over 4-surfaces:
this diagram is expected to be minimal one. At quantum level S-matrix element can be seen as
a representation of a path defining continuation of configuration space (CH) spinor field between
different sectors of CH corresponding to different 3-topologies. All continuations and corresponding
Feynman diagrams are equivalent. The idea about Universe as a computer and algebraic hologram
allows a concrete realization based on the notion of infinite primes, and space-time points become
infinitely structured monads [E10]. The generalized Feynman diagrams differing only by loops are
equivalent since they characterize equivalent computations.

Hopf algebra related structures and appropriately generalized ribbon categories [35, 36] could
provide a concrete realization of this picture. Generalized Feynman diagrams which are identified
as braid diagrams with strands running in both directions of time and containing besides braid
operations also boxes representing algebra morphisms with more than one incoming and outgoing
strands. 3-particle vertex should be enough, and the fusion of 2-particles and 1→ 2 particle decay
would correspond to generalizations of the algebra product µ and co-product ∆ to morphisms of the
category defined by the super-canonical algebras associated with 3-surfaces with various topologies
and conformal structures. The basic axioms for this structure generalizing ribbon algebra axioms
[35] would state that diagrams with self energy loops, vertex corrections, and box diagrams are
equivalent with tree diagrams.

Tensor categories might provide a deeper understanding of p-adic length scale hypothesis.
Tensor primes can be identified as vector/Hilbert spaces, whose real or complex dimension is prime.
They serve as ”elementary particles” of tensor category since they do not allow a decomposition
to a tensor product of lower-dimensional vector spaces. The unit I of the tensor category would
have an interpretation as a one-dimensional Hilbert space or as the number field associated with
the Hilbert space and would act like identity with respect to tensor product. Quantum jump
cannot decompose tensor prime system to an unentangled product of sub-systems. This elementary
particle like aspect of tensor primes might directly relate to the origin of p-adicity. Also infinite
primes are possible and could distinguish between different infinite-dimensional state spaces.

Quantum criticality means that renormalization group acts like isometry group at a fixed point
rather than acting like a gauge symmetry as in the standard quantum field theory context. Despite
this difference it is possible to understand how Feynman graph expansion with vanishing loop
corrections relates to generalized Feynman graphs and a nice connection with the Hopf- and Lie
algebra structures assigned by Connes and Kreimer to Feynman graphs emerges [37]. For instance,
it is possible to deduce an explicit representation for the universal momentum and p-adic length
scale dependence of propagators in this picture. The renormalization parameter Z is expressible
solely in terms of the zeros of Riemann Zeta. The condition that loop diagrams are equivalent
with tree diagrams gives explicit equations which might fix completely also the p-adic length scale
evolution of vertices. Quantum criticality in principle fixes completely the values of the masses
and coupling constants as a function of p-adic length scale.
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5 The quantum dynamics of topological condensation and
connection with string models

Despite its central role in the applications of quantum TGD, the mathematical description of the
topological condensation has remained a longstanding challenge for quantum TGD. Even at the
classical level the problem has stubbornly resisted all attacks to solve it. The situation looks even
more formidable at quantum level: how one could understand topological sum contacts at quantum
level when even the proper classical understanding is lacking?

A related open problem is whether Equivalence Principle holds true in TGD framework or not.
For instance, the physical interpretation of vacuum extremals, in particular the fact that Robertson
Walker cosmologies are vacuum extremals, have been a deep puzzle from the first days of TGD.
The new view about energy forcing to reformulate Equivalence Principle resolved the paradoxes
and allowed to understand what happens in topological condensation.

A further longstanding but much more technical problem has been to understand precisely
how gravitational constant, which is not fundamental constant in TGD, emerges. The success of
string models suggests that the analog of the string model action defined as area normalized by
gravitational constant or CP2 length squared should somehow pop up from the theory and the
question is how this could occur.

Even these steps of progress do not tell anything precise about the interaction of the levels of the
topological condensate at quantum level. The newest step of progress relates to the identification
of the hierarchical structure of topological condensates with the hierarchical structure of infinite
primes to be discussed in the later sections.

5.1 Questions related to topological condensation

One group of important questions relates to the relationship between inertial and gravitational
masses. Are they identical or does the proportionality constant depend on external conditions,
such as external electromagnetic field in which particle resides? Does the very attractive notion
of gravitational flux generalize from the Newtonian context to TGD framework? That this might
occur is suggested since one expects that the throats of wormhole contact behave like objects
possessing some gravitational mass. This in turn raises the question how to generalize the idea
about geodesic motion of a point like singularity so that it applies in the case of the wormhole
throats.

The stumbling block has been the same as in general relativity, where point like test particles
are assumed to move along geodesic lines of the background metric but actually correspond to
the singularities of the metric. This kind ’as if’-description is highly un-satisfying. In the case of
TGD singularity means that the induced metric is degenerate at the inner and outer elementary
particle horizons accompanying the wormhole contact with Euclidian metric and connecting two
Minkowskian space-time sheets. For CP2 type extremals representing elementary particles and
having Euclidian metric only single elementary particle horizon is present. It seems extremely
difficult to say anything about the physics in such extreme conditions when only the intuition
based on the Minkowskian physics is available.

5.2 Super-conformal invariance and new view about energy as solution
of the problems

At algebraic level TGD and string models are characterized by various super-conformal symmetries.
The scaling operator L0 is essentially mass squared operator and string model action generalizes the
action for the geodesic line. One might therefore ask whether these extremely powerful symmetries
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might allow to generalize the idea about the motion of point like particle along geodesic line so
that one would have model for the motions of wormhole throats along space-time sheets.

The properties of the elementary particle horizons, which are light like 3-surfaces surrounding
wormhole contacts connecting two parallel space-time sheets, might help to understand what hap-
pens in the topological condensation. It is good to describe briefly the evolution of ideas to more
clearly understand the general role of these symmetries.

1. The first discovery was that the metric 2-dimensionality of the future light cone boundary
(moment of big bang) implies super-canonical and related conformal invariance. These sym-
metries reduce the construction of the configuration space geometry and spinor structure
to symmetry considerations. If Kähler action were deterministic, the construction of the
quantum theory would reduce to the light cone boundary and one would lose time as in
the quantized general relativity. This would be mathematically very nice but physically a
catastrophe. Fortunately, this is not the case and the problem was how to take into account
the non-determinism of the Kähler action.

2. Ironically, the gigantic super-canonical symmetries did not relate directly to the elementary
particle mass spectrum: in particular, electro-weak symmetries are a problem. The next
discovery came with the number theoretical formulation of quantum TGD: there is also a
second conformal invariance involved. This symmetry might be called quaternion confor-
mal invariance and is due to the local quaternion structure of the 4-D space-time surface.
This symmetry leads to the gauging (or Kac-Moodying) of Poincare, color and electro-weak
symmetries which have nothing to do with the configuration space metric (allowing zero
modes). Also a beautiful understanding of the fermionic degrees of freedom emerges. It is
the quaternion conformal invariance which determines elementary particle masses. Contrary
to the first belief, super-canonical invariance makes itself visible also at the level of elemen-
tary particle propagators and vertices and brings in non-stringy effects. It also involves new
physics appearing in all length scales and being especially relevant for the understanding of
consciousness.

3. The next discovery was that the light likeness for the boundaries of the space-time sheets
provides a very general manner to satisfy boundary conditions of the Kähler action identically.
Light likeness in turn implies metric two-dimensionality and conformal invariance. A second
example of light like 3-surface X3

l ⊂ X4 is provided by elementary particle horizons at which
the Minkowskian signature of the induced metric is changed to an Euclidian one. There is
a strong temptation to identify this symmetry as quaternion conformal invariance but it is
not quite obvious whether this identification is correct.

4. The new view about energy (it took 25 years to end up with it!) implies the net quantum
numbers and classical conserved quantities of the Universe vanish. By the crossing symmetry
the vanishing of the net energy of is consistent with elementary particle physics. Also a
consistency with macroscopic physics is achieved. Gravitational energy can be identified as
the difference of Poincare (inertial energies) of positive and negative energy matter and is thus
non-vanishing even for vacuum extremals and non-conserved as it should be. This provides
elegant interpretation for inertial vacuum property of the Robertson-Walker cosmologies.

The notions of inertial and gravitational masses generalize to the notions of inertial and grav-
itational quantum numbers in general. An interesting question is whether the gravitational
version of color Kac Moody algebra could have interpretation in terms of electro-weak Kac
Moody algebra and generators having the quantum numbers of Higgs field. The identification
of Higgs field as associated with the complement of U(2) sub-algebra of color algebra have
been already proposed but this proposal was based on the observation that for the known
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absolute minima of the Kähler action classical color currents decompose to two separately
conserved currents.

5. Taking into account the non-determinism of Kähler action, the new view about energy forces
to say a final good-bye to the idea about the Universe as a deterministic clockwork which
started to run at the moment big bang. Pairs of space-time sheets of opposite energy can be
created from vacuum anytime and this occurs most naturally at light like 7-surfaces X3

l ×CP2

taking the role of causal determinants so that the TGD counterparts of big bangs are possible
everywhere in M4. The notion of deterministic cosmology can make sense only in a statistical
sense.

This means generalized super-canonical invariance at the level of the configuration space of
3-surfaces, and one must generalize the construction of the configuration space metric and
spinor structure. If not anything else, this at least allows to understand something about the
enormous fractal complexity of the configuration space geometry.

Configuration space decomposes into sectors such that the line element of the metric contains
the contributions from the light like 7-surfaces X3

l ×CP2, X3
l light like surface. These sectors

are related by Poincare transformations to each other so that Poincare invariance acts in a
very natural manner. In particular, it becomes possible to assign definite value of geometric
time to each sector of this kind: without the non-determinism of Kähler action this kind
of assignment would not be possible and the assignment of definite value of geometric time
to subjectively experience time would be lost as it is lost in general relativity. These light
like surfaces have the structure of category with respect to the formation of set theoretic
intersections and unions and category theory might help to disentangle the complexities of
the configuration space geometry.

6. The assignment of Poincare momentum and other conserved quantum numbers with quater-
nion conformal invariance suggests that also gravitational momentum and gravitational quan-
tum numbers should be assignable to some conformal invariance. Perhaps the quaternion
conformal deformations of light like boundaries and elementary particle horizons restricted
to deformations of the space-time surface in a direction normal to the light like surface could
define this conformal symmetry.

5.3 Connection with string models and how gravitational constant ap-
pears

In the proposed framework the description of what happens in the topological condensation reduces
to gravitational super-conformal invariance. The scaling operator L0 has an interpretation as a
mass squared operator at configuration space level and the interpretation of the L0 associated
with elementary particle horizons as gravitational mass squared suggests strongly itself. If so, then
gravitational resp. inertial mass would correspond to the gravitational resp. quaternion conformal
super-conformal invariance.

Equivalence Principle, if true in strong sense, would state that particles have same quantum
numbers with respect to these two conformal symmetry algebras. Some kind of mapping of the
states of these representations to each other would be obviously required if Equivalence Principle
is true in strong sense. Quaternion conformal and gravitational conformal invariance might be
even one and the same thing. In fact, quaternion conformal invariance implies that space-time
region in a well-defined sense reduces to a two-dimensional representative inside which quaternionic
coordinates are commutative and I have proposed that this representative corresponds to a 2-
surface associated with the elementary particle horizon. If so, then one would a strong symmetry
based argument supporting Equivalence Principle.
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This finding forces to ask whether the counterpart of the string model action emerges somehow
from the theory. Consider first canonical conformal invariance. In the case of the light cone
boundary the area of the light like coordinate constant sphere is proportional to the distance
squared from the dip of the light cone so that no unique surface area can be associated to the
light like boundary. Same is true for the light like like boundaries having light like M4 projections.
Note however that conformal invariance states that the area as such does not matter.

For the elementary particle horizons associated with gravitational conformal invariance, which
in many respects resemble the black hole horizons (recall only the elementary particle black hole
analogy), situation might be different. If the situation is stationary with respect to some time
coordinate t, which means that the area A(t) of t = constant section is invariant under time
translations, the exponentials exp(−A/A0) of the time=constant section, where A0 is some nor-
malization area, can (but need not!) appear as additional multiplicative terms in the vacuum func-
tional. Hence the two-dimensional string orbits would be replaced by the metrically 2-dimensional
elementary particle horizons in TGD framework.

Note that ’strings’ have now Euclidian signature of metric whereas in superstring models the
signature is Minkowskian. However, the dynamical degrees of freedom for strings are always
Euclidian which means that an automatic elimination of the non-physical degrees of freedom occurs
in TGD framework. If this picture is correct, gravitational interaction could be modelled using a
generalization of string models diagrams in which incoming and outgoing strings are replaced with
wormhole contacts.

Consider next the identification of the constant A0 assuming that the exponents exp(−A/A0)
indeed are present in the state functionals. In TGD framework gravitational constant is not a
fundamental constant but at the level of quaternion conformal representations its role is take by
CP2 length squared R2 ∼ 108G (only in this manner p-adic mass calculations give sensible results
and cosmic strings have a sensible string tension).

1. The first geometrically motivated possibility is that one has A0 = xR2, where x is of order
unity. This option is unavoidable if gravitational and quaternion conformal symmetries are
actually one and the same thing. One should be able to show that the interaction energy
between wormhole contacts is GM1M2/r with G ∼ 10−8R2. The task would be to understand
why the naive expectation for the value of the gravitational constant is scaled down by a
factor of order 10−8. I have developed some arguments for this kind of reduction in the
chapter devoted to the construction of S-matrix and the arguments are based on the value
of CP2 action exponentials associated with the virtual gravitons. Also p-adic physics based
arguments giving explicit formula for G in terms or R2 exist.

2. The option suggested by naive generalization of string models is that A0 is of the same order
of magnitude as gravitational constant:

A0 = kG ≡ 4πα′ . (19)

where k is a numerical constant and T = 1/4πα′ corresponds to string tension. If this option
is correct, the area of the elementary particle horizon in the induced metric should be of
order Planck length squared and much smaller than CP2 length squared. Now one should
develop a good argument for why gravitational constant, presumably constrained by internal
consistency conditions, differs by 8 orders of magnitude from CP2 length squared. Also
one should show that the different scale factors for gravitational and quaternion conformal
masses do not lead to contradiction. It must be emphasized that one should not draw too
hasty conclusions since the functional integral defined by the exponential exp(−A/A0) and
exponential of the Kḧler action is quite different thing from the stringy functional integral.
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5.4 Elementary particle vacuum functionals and gravitational conformal
invariance

Also a connection with elementary particle vacuum functionals emerges. Elementary particle
vacuum functions [F1] are associated with the boundary components of particle like surfaces and
conformal and modular invariance are key elements in their construction. Also this part of the
theory has remained relatively disjoint from quantum TGD proper. If the 3-dimensional boundary
components of CP2 type extremals have degenerate metric, then the assumptions involved with
the construction of the elementary particle vacuum functionals find a justification.

The construction of the elementary particle functionals might make sense also at the level ele-
mentary particle horizons and the question whether the successful genus-generation correspondence
is associated with genuine boundary components of the CP2 type extremal or with the elementary
particle horizon remains still open!

Quaternion conformal invariance requires that CP2 type extremals have holes. If one assigns
elementary particle vacuum functional with the boundary component of CP2 type extremal then
one must assume that there is strong deformation of the CP2 type extremal to the direction of
M4 implying that the boundary has degenerate metric. Therefore if the notion of free CP2 type
extremal makes sense at all, its boundary must be equivalent with elementary particle horizon.
Could it be that in the topological condensation the hole of a free CP2 type extremal becomes
elementary particle horizon and is effectively replaced with the boundary of the elementary particle
space-time sheet.

5.5 Questions about topological condensation

One can imagine two manners for how CP2 type extremals topologically condense.

1. The first possibility is to glue CP2 type extremals along the boundary of the hole to the
corresponding hole of the elementary particle space-time sheet. This option is very natural
since the boundary of CP2 type extremal must have a degenerate metric in any case. The
number of the boundary components is conserved in this process. If gauge fluxes are conserved
at the Minkowskian space-time sheets (they need not be conserved and even less so for
Euclidian space-time regions), the boundary of the elementary particle space-time sheet
having a size of order Compton length would carry the gauge charges associated with the
free CP2 type extremal with a hole. The classical counterpart for charge normalization would
perhaps be the renormalization of the gauge charges in this process.

2. Alternatively, a CP2 type extremal representing elementary particle and having a boundary
component with a given genus could be glued to the elementary particle space-time sheet so
that boundary component does not disappear. Does the elementary particle horizon carry
the negatives of the original elementary particle quantum numbers in this case? Does also
the boundary of the elementary particle space-time sheet carry the negatives of the original
elementary particle vacuum numbers as gauge flux interpretation suggests? If so, then one
ends up with a rather paradoxal situation since the total quantum numbers of the structure
vanish. Thus it would seem that the first option is more plausible for the topologically
condensed elementary particles.

Also the topological condensation of a Minkowskian space-time sheet at a larger similar space-
time sheet is possible. Now both inner and outer elementary particle horizons appear. If the electric
gauge fluxes and gravitational flux are conserved as they flow through the wormhole contacts, the
wormhole throats of the wormhole contact connecting two space-time sheets with a Minkowskian
signature are carriers of opposite classical quantum numbers. The question is whether this gener-
alizes to the level of the super-conformal representations as an excellent approximation or exactly.
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6 Algebraic physics at the level of configuration space

This section is not a distilled final answer to the challenges involved with the p-adicization of
the configuration space geometry and spinor structure. The reasons are simple: it is not even
clear what the basic challenges are! Is finite-p p-adicization enough/possible or should one try to
imagine what infinite-P p-adicization could mean? This serves as an excuse for why the subsections
represent only a loose collection of essays written during a time period about one decade reflecting
the evolution of ideas and the drift of focus.

The last subsection represents the most recent approach to the p-adicization of the configuration
space geometry. The reduced configuration space identified as the space of the maxima of Kähler
function is the key notion. This space is the direct counterpart of the spin glass landscape known
to obey ultrametric topology naturally. This approach is reasonably concrete and relies heavily on
the most recent, admittedly speculative, view about quantum TGD.

6.1 A possible view about basic problems

Algebraic approach provides new insights to the construction of configuration space geometry and
spinor structure [B2, B3, B4]. In particular, one can provide answers to the puzzling questions
about to the precise role of the p-adic numbers.

1. Are finite-p p-adics needed at all or should one allow only real and infinite-P p-adic topologies,
which seem to be more easily realizable? Could the infinite prime associated with the space-
time surface characterize the infinite-P p-adic topology of the region of configuration space
where it belongs? What about the topology of the configuration space sector representing
space-time surfaces representing given infinite integer N? Is the topology N -adic or infinite-P
p-adic for some prime factor of N? Is infinite-P p-adic topology associated with any factor
P possible and does it characterize the view of the observer characterized by that particular
P? By previous arguments infinite-P p-adicization looks surprisingly simple procedure and
there seems no reason to exclude this possibility.

2. Do the finite-p p-adic regions of the space-time surface contribute to the configuration space
geometry or not? Could it be that they give no contribution in accordance with the iden-
tification of p-adic regions as the geometric correlate for ’mind-stuff’? Or do both real,
infinite-P, and finite-p p-adic configuration spaces make sense and represent configuration
space as ’seen’ by a particular observer? Is the number field associated with the config-
uration space metric and other structures same as that defining the local topology of the
configuration space as it seems natural to assume?

Both the maximal algebraic and topological democracy and the generalized notion of number
field suggest that one should allow maximal generality, which somewhat paradoxically should pay
itself back as enormously tight constraints on the real physics. Algebraic approach raises also
further questions.

1. Do quaternions and octonions emerge also at the level of the configuration space geometry as
useful auxiliary tools? Could configuration space geometry inherit quaternion-holomorphic
character of the space-time geometries? Quaternion-conformal structures certainly decom-
pose configuration space into subsets corresponding to given quaternion-conformal structure
which suggests that quaternions might serve as an important auxiliary tool. The hypothesis
that configuration space has Hyper-Kähler structure fits nicely with the idea of quaternion
structure and implies that configuration space is Ricci flat: this is necessary in order to have
a configuration space integration measure which is free of infinities. The choice of a particular
Kähler structure of configuration space (there is a full sphere S2 of such structures) would
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correspond at the level of conformal weights a selection of a commutative complex plane of
quaternions.

2. Quaternionic super-conformal transformations act only inside the sets of quaternion confor-
mally equivalent surfaces whereas the super-canonical invariance acts as a symmetry of the
light like 7-surfaces X3

l ×CP2, where X3
l is light like 3-surface of M4 and transforms quater-

nion conformally equivalent surfaces to each other. How does quaternionic super-conformal
invariance relate to the super-canonical conformal symmetries?

The progress in the understanding of the super-conformal symmetries of the configuration
space geometry [B2, B3, C5] allows to answer this question quite satisfactorily. Super-
canonical conformal weights can be regarded as punctures in complex plane in which quater-
nion conformal symmetries act as conformal transformations. The generators of super-
canonical algebra can be seen as quaternion conformal fields in the space of super-canonical
conformal weights labelled by quaternion conformal weights. This view leads to beautiful
connections between braid and quantum quantum groups, type II1 factors of von Neumann al-
gebras, and Clifford algebra defined by configuration space gamma matrices. Super-canonical
conformal weights for the generators of super-canonical algebra correspond zeros of Riemann
Zeta and this leads to a connection with Riemann Zeta and Beraha numbers and to a re-
alization that the imaginary parts of the zeros can be regarded as primes in additive sense.
Hence number theory would become a key element of the configuration space geometry.

The existence of two separately conserved fermion numbers is essential part of the picture.
Lepton-quark dichotomy corresponds to Ramond-NS and SUSY-kappa dichotomies and con-
figuration space dynamics reduces to both Ramond and NS Super Virasoro conditions satis-
fied separately by both super-canonical and quaternion conformal algebras.

A still unsettled question is whether quaternion conformal degrees of freedom do contribute
to the configuration space geometry or not. One could define the contribution to metric in
terms of anticommutators of the quark-like super-generators but it is unclear whether the
symmetries have representations in terms of configuration space Hamiltonians as required.

3. Further questions are related to the possibility (necessity is perhaps too strong word) to
generalize the configuration space to include configuration spaces for 4n-dimensional surfaces
in 8n-dimensional imbedding spaces. As already explained this generalization has a very
nice interpretation in terms of the notion of topological condensate and provides a powerful
mathematical tool for the mathematical modelling of topological condensate and of many-
particle states at configuration space level. The description is analogous to the description of
n-particle state as a point in E3n and conforms nicely with the somewhat mysterious more
or less identity CH = CH2 = .... making sense only in infinite-dimensional context.

6.2 Algebraic physics and configuration space geometry

The reader not familiar with the basic ideas related to the construction of the configuration space
geometry and spinor structure is warmly encouraged to read the chapters [B2, B3, B4].

6.2.1 Configuration space as a union of symmetric spaces

The construction of the configuration space geometry and spinor structure is very algebraic process
since configuration space is a union of infinite-dimensional symmetric spaces of form G/H and the
construction of the metric reduces to its construction in single point of the symmetric space and
is dictated by super-canonical symmetry. The crucial Cartan decomposition of the tangent space
of G is defined by the decomposition of the super-canonical algebra g to a direct sum g = h+ t of
subspaces satisfying the conditions [h, h] ⊂ h, [h, t] ⊂ t, and [t, t] ⊂ h.
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After some trials, the structure of this decomposition has become clear. The algebra has as
generating elements generators labelled by both the trivial and non-trivial zeros of Riemann Zeta
and their commutators give naturally rise to g = t+ h decomposition.

1. Only the generators with conformal weights h = n− 1/2− i
∑
niyi,

∑
i ni = odd/even for n

even/odd and h = 2n, n > 0 contribute to t.

2. The generators with conformal weights with conformal weights h = n − 1/2 − i
∑
i niyi,∑

i ni = odd/even for for n odd/even and h = 2n− 1, n > 0 contribute to h.

The absence of the non-zero norm physical states with h > n−1/2− i
∑
i niyi, n > 1, can be

understood in terms both quaternion conformal or super-canonical conformal invariance. If
these generators would not represent zero norm states, the basis would not satisfy orthogonal-
ity requirements. The action of quaternion conformal algebra on super-canonical conformal
weights is non-trivial but by gauge invariance generators remain effectively invariant in the
infinitesimal action whereas global action can give rise to a braiding operation. The present
of complex conformal weights relates directly to the complex values of Casimir operator of
Lorentz group which replaces mass squared operator in the stringy mass formula in the case
of super-canonical Virosoro algebra.

The contribution of the quark-like quaternion conformal generators to the metric cannot be
excluded. In this case the decomposition g = t+h would correspond to half odd integer conformal
weights for t and integer conformal weights for h: this was the original guess for the Cartan
decomposition in the case of super-canonical algebra.

What one should prove is that the properties of Kähler action indeed imply this decomposition.

6.2.2 Zero modes

There must be an infinite number of different mutually nonequivalent fundamental quaternionic
coordinatizations (q, p) for the imbedding space such that for each coordinatization the effective
space-time metric defined by the Kähler action can be regarded as an induced effective metric of
imbedding space. The symplectic transformations associated with the octonionic symplectic struc-
ture act as conformal transformations and cannot relate inequivalent coordinatizations. A good
guess is that inequivalent coordinatizations (quaternion-conformal structures) of the imbedding
space are related by the canonical transformations of H and possibly other transformations of the
imbedding space inducing changes of zero mode coordinates. These canonical transformations can
be indeed extended from δM4

+ ×CP2 to entire H uniquely since absolute minimization assigns to
a deformation of a 3-surface Y 3 on light cone boundary a unique deformation of X4(Y 3).

What about quaternion-analytic deformations of the space-time surface: do they represent
zero modes? It might quite well be that this the case. They would however correspond to genuine
physical degrees of freedom since the ground states of the super-canonical representations would
be different for them.

Space-time surfaces in a given quaternion conformal equivalence class have as their ’hard core’
the 2-dimensional surface at which the quaternionic coordinates reduce to complex numbers. Every
disjoint component of this surface has some genus probably related to the genus characterizing
particle family. One might hope that one could understand at least the quaternion-conformal
symmetry as an analytic continuation from this 2-dimensional surface. One might even hope that
this allows to reduce the understanding of this aspect of theory to the existing wisdom provided by
super-conformal theories. Complex subfields of octonions correspond to points of six-sphere and
this brings in additional local degeneracy of conformal structures.

These observations suggest following working hypothesis.
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1. Zero modes decompose to canonical covariants and invariants. The canonical transformations
generated by the function basis of M4

+ × CP2 labelled by even integer valued conformal
weights correspond to the zero modes labelled by H-coordinates in the decomposition of
the configuration space CH = ∪zeromodesG/H (do not confuse that ′H ′ with imbedding
space!). There are also other zero modes labelled by canonical invariants described in chapter
”Construction of the configuration space geometry”. The size and shape of the 3-surface and
classical Kähler field correspond to these zero modes. These invariants are useful for practical
purposes if it is a good approximation to shift the dip of the light cone to the laboratory,
otherwise these invariants have only cosmological significance.

2. Kähler action densities are same for the space-time surfaces related by quaternion-conformal
transformations of H. Quaternion-conformal transformations in general correspond to non-
trivial deformations of the space-time surface identifiable as zero modes.

3. The Hamiltonians labelled by odd integer valued conformal weights transform to each other
non-equivalent quaternion-conformal structures of space-time surfaces which correspond to
the fiber degrees of freedom of G/H representing quantum fluctuations. The Hamiltonians
labelled by even integer conformal weights correspond to zero modes and to the summand h
in the Cartan decomposition g = t + h of the super-canonical algebra. Why this should be
the case, is an open question and as long as a real justification for the assumption is lacking,
one must take it with a grain of salt.

6.2.3 How to construct super-canonical algebra?

The configuration space of 3-surfaces Y 3 as a union of infinite-dimensional symmetric spaces la-
belled by zero modes obeying real or infinite-P p-adic topology associated with the infinite prime
determining space-time surface X(Y 3) and having metric and spinor structure determined solely
by super-symmetry, is the basic intuitive picture about configuration space geometry.

Algebraic physics vision suggests that the representation of the generators of the canonical
transformations of the lightlike 7-surface X3

l ×CP2 must be expressible in terms of rational func-
tions. In the case that Hamiltonians correspond to irreducible representations of SU(3), they are
products of rational functions of CP2 coordinates with functions depending on coordinates of X3

l .
If the Hamiltonians transform according to an irreducible representation of the rotation group
leaving rM = constant sphere S2 invariant, they are rational functions of the complex coordinates
of S2. If the hypothesis that the phases qiy for all primes q and all non-trivial zeros z = 1/2 + iy
of Riemann Zeta belong to a finite algebraic extension of Rp for any prime p, the p-adicization of
the Hamiltonians at imbedding space level is possible and the remaining problems relate to the
3-integrals appearing in the definition of configuration space Hamiltonians.

The modified Dirac action allows to deduce explicit expressions for the super generators. This
allows to extend the formulas for the configuration space Hamiltonians in terms of the classical
canonical charges associated with the Kähler action to the formulas for super-canonical charges.
Configuration space metric, being numerically equal to the Kähler form in complex coordinates, in
turn relates directly to the canonical charges. A natural expectation is that gamma matrices can
be related by an analogous formula to the expressions for the super-canonical charges. The super
algebra of quaternion-analytic transformations acts in zero modes.

6.2.4 Some questions

Configuration space spinors [B4] correspond to the representations of the super-canonical algebra
and the basic implication of the infinite prime concept is that one can assign to a given space-time
surface a unique ground state of a super-conformal representation. There are several questions to
be answered.
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1. Why the ground states in higher dimensions should be constructible as Fock states with many-
particle states of the previous level taking the role of elementary particles? The interpretation
of 4n-dimensional surfaces as n space-time sheets of topological condensate provides answer
to this question. The lower level many-particle states serve as elementary particle at the next
level of the topological condensate. Super-symmetry allows also to make given many-boson
state fermionic and vice versa.

2. A further problem is the interpretation of the infinite primes represented by higher order irre-
ducible polymials of infinite primes which are in one-one-correspondence with purely bosonic
states at higher level. This problem is encountered already at the first level. The physical
interpretation of these states is as bound states with the degree of the polynomial having
interpretation as a particle number in consistency with the interpretation of the infinite inte-
gers as representations for interacting but not bound many particle states. The irreducibily
of the polynomial would be number theoretical analog of bound state entanglement hav-
ing join along boundaries bonds as space-time correlate. The particle number in question
is clearly topological and naturally corresponds to the number of space-time sheets. This
picture suggests a mapping of n:th order polynomial of generating infinite primes to n-fold
product of infinite primes associated with an algebraic extension of quaternions. At the level
of configuration space spinor fields higher level infinite primes correspond to definite ground
states of super-canonical representations so that in principle no problems are encountered.

6.3 Generalizing the construction of the configuration space geometry
to the p-adic context

A problematics analogous to that related with the entanglement between real and p-adic number
fields is encountered also in the construction of the configuration space geometry. The original
construction was performed in the real context. What is needed are Kähler geometry and spinor
structure for the configuration space of three-surfaces, and a construction of the configuration
space spinor fields. What (as I believe) solves these immense architectural challenges are the
equally immense symmetries of the configuration space and algebraic continuation as the method
of p-adicization. What I hope that everything of physical interest reduces to the level of algebra
(rational or algebraic numbers) and that topology (be it real or p-adic) disappears totally at the
level of the matrix elements of the metric and of S-matrix.

6.3.1 Generalizing the construction for configuration space metric

It is not enough to generalize this construction to the p-adic context or infinite-P p-adic context.
3-surfaces contain both real and p-adic regions and should be able to perform the construction for
this kind of objects.

1. Very naively, one could start from the Riemannian construction of the line element which
tells the length squared between infinitesimally close points at each point of the Riemann
manifold. The notion of line element involves the notion of nearness and one obviously cannot
do without topology here. The line element makes formally sense sense for real and p-adic
contexts but not for the situation in which 3-surface contains both real and p-adic regions:
it does not make sense to sum real and p-adic line-elements together. One can however
construct a collection of real and p-adic line-elements coming from various regions of the
3-surface.

2. The notion of line-element is not actually needed in the quantum theory. Only the matrix
elements of the configuration space metric matter and one could consider the possibility that
configuration space metric is a collection of these matrix elements for real and p-adic regions
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with the deformations of 3-surface selected so that they vanish only in real or p-adic regions
with fixed value of p. If the rational boundaries between the regions of the 3-surface belonging
to different number fields correspond to zero modes (and behave effectively classically), there
is no need to construct the metric associated with these modes.

3. With these assumptions metric tensor would reduce to a direct sum of tensors belonging to
different number fields. One cannot exclude the possibility that the values of the matrix
elements are rational or complex rational (or algebraic) so that everything would algebraize
and topology would disappear at the level of matrix elements completely.

4. The explicit construction of the matrix elements of the metric in the real context involves
canonical symmetries, and thus also configuration space Hamiltonians, whose definition in-
volves integrals over 3-surfaces. Definite integrals are problematic in the p-adic context, as
is clear from the fact that in-numerable number of definitions of definite integral have been
proposed. One might however hope that one could reduce the construction in the real case to
that for the representations of super-conformal and canonical symmetries, and analytically
continue the construction from the real context to the p-adic contexts by defining the matrix
elements of the metric to be what the symmetry respecting analytical continuation gives.

5. Configuration space integration should be also continued algebraically to the finite-p p-adic
context. Quantum criticality realized as the vanishing of loop corrections, in particular those
associated with the configuration space integral, would reduce configuration space integration
to purely algebraic process much like in free field theory and this would give could hopes about
p-adicization. Matrix elements would be proportional to the exponent of Kähler function at
its maximum plus matrix elements expressible as correlation functions of conformal field
theory with arguments of the correlations functions identifiable as super-canonical conformal
weights. The idea about the vanishing of loop corrections can be expressed as equivalence
of loop diagrams with tree diagrams in the algebraic formulation for the quantum criticality
discussed in [C5]. This encourages further the hopes about complete algebraization of the
theory so that the independence of the basic formulation on number field could be raised to
a principle analogous to general coordinate invariance.

6.3.2 Generalizing the notion of configuration space spinor field

One must also construct spinor structure. Also this construction relies crucially quaternion confor-
mal and super-canonical symmetries. Spinors at a given point of the configuration space correspond
to the Fock space spanned by fermionic oscillator operators and again one might hope that super-
symmetries would allow algebraization of the whole procedure. Configuration space spinor fields
depend on the point of the configuration space and here the hopes are based on the construction
of an orthonormal basis, whose elements are normalized to unity with respect to an inner product
involving the integral over the configuration space. p-Adic configuration space integral poses deep
technical problems but again analytical continuation from the real context using super-symmetries
might save the situation.

Assume that all these difficulties can be overcome using super-symmetry based analytical con-
tinuation and that everything is algebraic at the S-matrix level. How to generalize of the notion
of configuration space spinor field?

1. For a moment restrict the consideration to the space of 3-surfaces with fixed decomposition
to real and p-adic regions such that the boundaries between regions belonging to different
number fields consist of fixed sets of rational numbers. The whole configuration space can be
regarded as a union over all these sectors. If the rational boundaries can be regarded as zero
modes (classical degrees of freedom in which localization occurs in each quantum jump),
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there is no need to integrate over these boundaries in the inner product for configuration
space spinors fields. Assume that this is the case.

2. Assume that one has found an orthonormal basis for the spaces of real and p-adic regions of
the 3-surfaces with a fixed rational boundary.

3. Armed with these assumptions (plus many other about which I am not yet conscious of) one
can construct formal products of the configuration space spinor fields belonging to different
regions. One can also construct formal sums of the products with rational or algebraic
entanglement coefficients. Although these expressions do not belong to any definite number
field, their inner products are complex rational numbers and this is all that is needed for
doing physics.

This construction, if it really works, would mean that it is possible to construct a quantum theory
which is able to describe also the interaction between cognitive representations and matter as well
as cognitive representations characterized by different values of p-adic prime p.

6.3.3 Could the trivial solution be the only one?

One must consider also the possibility that the trivial solution to these challenges is the only
possible one. The line element would vanish in all finite-p p-adic sectors. p-Adic space-time
regions would correspond to zero modes in which a complete localization (or at least localization
to discrete set of points) would occur in each quantum jump so that there would be no need to
define p-adic configuration space integral. The p-adic counterparts of the field equations defined
by the Kähler action would be satisfied. This option would save from the trouble of trying to define
the four-dimensional integral defining the Kähler action. One would also avoid the challenge of
giving p-adic meaning to the exponent of the Kähler action defining the vacuum functional.

Since configuration space metric would not pose any conditions on the fermionic oscillators
operators, they could but need not anti-commute to zero.

1. Do fermionic oscillator operators anti-commute to zero...

Consistency would suggest that fermionic oscillator operators anti-commute to zero in p-adic
sector. This would mean that p-adic fermionic oscillator algebra reduces to Grassmann numbers
and thus also fermionic degrees of freedom represent classical zero modes. The fact that classical
theory is an essential part of all quantum theories could be interpreted as reflecting the fact that
cognition obeys purely classical physics. The objection is that fermionic anticommutation relations
are universal and should be more or less independent of the number field involved.

2. ... or do they generate quaternion conformal algebra at least?

On physical grounds it seems that fermionic oscillator operators cannot generate a mere Grass-
mann algebra. p-Adic mass calculations are based on p-adic thermodynamics which assumed p-adic
conformal invariance and p-adic Super Kac Moody algebra based on fermionic oscillator operators.
Certainly fermionic oscillator operators cannot anti-commute to zero in this case and in cognitive
degrees of freedom one would have quaternion conformal fermionic field theory in a fixed p-adic
background space-time. The non-anti-commutativity of fermions is consistent with the vanishing
of the p-adic configuration space metric if quaternion conformal algebra does not contribute to the
configuration space metric. Mathematician would however question the asymmetric treatment of
super-canonical and quaternion conformal degrees of freedom. After all, there is tight interaction
between them.

One might hope that this theory allows to define various symmetry generators purely represen-
tation theoretically without any reference to the problematic integrals over p-adic 3-surface. This
seems to be the case. For Kac Moody representations momentum and mass squared operators
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do not correspond to conserved charges defined by integrals. Quaternion conformal invariance
implies effective two-dimensionality in the sense that the quantization of the theory reduces to
that in a commutive sub-manifold of the quaternionic space-time. At each point of a commutative
sub-manifold quaternionic tangent space reduces to some subspace of quaternions isomorphic to
the field of complex numbers. The integrals defining conserved charges are integrals over circles in
the real context and integration can be done by residue calculus without any resort to a numerical
definition of the integral. The residue calculus would provide a natural p-adic generalization for
these integrals. Clearly this option could solve all technical problems related to the construction of
the configuration space spinors and configuration space spinor fields and be consistent with p-adic
mass calculations.

From the point of view of cognition the situation would look like follows (assuming the option
allowing quaternion conformal representations).

1. Quaternion conformal fermionic algebra would have interpretation as an infinite-dimensional
Boolean algebra and as a physical correlate of logical thinking.

2. Cognitive representations would be completely classical in space-time degrees of freedom and
induced by the common boundaries of the real and p-adic regions.

3. The unitary time development operator U could generate rational or algebraic entanglement
between different number fields in both bosonic and fermionic degrees of freedom. Thus the
mapping of the real to cognitive by quantum entanglement would occur in the same manner
as in quantum measurement. Thus even the trivial solution gives all what can dream of and
would predict that the world of cognitive experience is classical.

This picture suggests that physical theories do not only reflect the structure of the physical
world but also the structure and limitations of our cognitive consciousness.

1. Fermionic quaternion conformal symmetries would be realized as p-adic cognitive represen-
tations unlike the super-canonical symmetries and super-conformal symmetries of light like
manifolds of 4-dimensional Minkowski space related to the configuration space metric. Only
the standard model symmetries (Poincare, color, and electro-weak super Kac Moody sym-
metries) would be realized at the level of cognitive representations in terms of effectively two-
dimensional quaternion conformal invariance. One can say that cognition would represent
space-time as effectively two-dimensional and makes it to look like the world of superstring
models.

2. The cognitive non-representability of super-canonical and conformal symmetries of light like
manifolds of 4-dimensional Minkowski space could provide answer to several intriguing ques-
tions. Why these symmetries, which are realized at the level of sensory qualia but not at
the level of cognition, have not been invented although the massless extremals possessing
super-canonical symmetries seem to be everywhere and have fantastic explanatory power in
the physics of living matter? Why the conformal symmetries of the light like manifolds of 4-
dimensional Minkowski space, which is extremely natural and obvious mathematically, have
still not found their way to the mathematical physics literature although they could have
been invented already at the times of Einstein and quantum gravitational holography almost
forces to discover these symmetries? Could the effective two-dimensionality of cognition and
heavy left-brainy character of the recent day theoretical physics explain the otherwise mys-
terious looking success of super string models despite the fact that the world of super strings
is so far from the experiental reality: did the cognitive representation of the world mask the
world behind it?

Despite these arguments, my own vision when I am writing this is that finite-p p-adicity is realized
also at the level of the configuration space and the difficult challenge is to add details to this vision.
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6.4 p-Adicization of quantum TGD by algebraic continuation

Assuming that S-matrix exists simultaneously in all number fields (allowing finite-dimensional
extensions of p-adics), the immediate question is whether also the construction procedure of the real
S-matrix could have a p-adic counterpart for each p, and whether the mere requirement that this is
the case could provide non-trivial intuitions about the general structure of the theory. Not only the
configuration space but also Kähler function and its exponent, Kähler metric, and configuration
space functional integral should have p-adic variants. In the following this challenge is discussed in
a rather optimistic number theoretic mood using the ideas stimulated by the connections between
number theory and cognition.

6.4.1 The p-adic variants of configuration space geometry and spinor structure

The basic structure is the rational configuration space whose points have rational valued coordi-
nates. This space is common to both real and p-adic variants of the configuration space. Therefore
the construction of the generalized configuration space as such might not be a problem.

The assumption that configuration space decomposes into a union of symmetric spaces labelled
by zero modes means that the left invariant metric for each space in the union is dictated by
isometries. It should be possible to interpret the matrix elements of the configuration space metric
in the basis of properly normalized isometry currents as p-adic numbers in some finite extension
of p-adic numbers allowing perhaps also some transcendentals. Note that the Kähler function
is proportional to the inverse of Kähler coupling strength αK which depends on p-adic prime p,
and does seem to be a rational number if one takes seriously various arguments leading to the
hypothesis αK = π/4K2, K2 = p× 2× 3× 5..× 23. If so then e, π and logarithms of primes seem
to be the minimum generating set of transcendentals required in the extensions used.

The continuation of the exponent of Kähler function and of configuration space spinor fields to
p-adic sectors would require some selection of a subset of points of the rational configuration space.
On the other hand, the minimum requirement is that it is possible to define configuration space
integration in the p-adic context. The only manner to achieve this is by defining configuration
space integration purely algebraically by perturbative expansion. For free field theory Gaussian
integrals are in question and one can calculate them trivially. The Gaussian can be regarded as a
Kähler function of a flat Kähler manifold having maximal translational and rotational symmetries.
Physically infinite number of harmonic oscillators are in question. The origin of the symmetric
space is preferred point as far as Kähler function is considered: metric itself is invariant under
isometries.

6.4.2 Algebraization of the configuration space functional integral

Configuration space is a union of infinite-dimensional symmetric spaces labelled by zero modes.
One can hope that the functional integral could be performed perturbatively around the maxima
of the Kähler function. In the case of CP2 Kähler function has only single maximum and is
a monotonically decreasing function of the radial variable r of CP2 and thus defines a Morse
function. This suggests that a similar situation is true for all symmetric spaces and this might
indeed be the case. The point is that the presence of several maxima implies also saddle points at
which the matrix defined by the second derivatives of the Kähler function is not positive definite.
If the derivatives of type ∂K∂LK and ∂K∂LK vanish at the saddle point (this is the crucial
assumption) in some complex coordinates holomorphically related to those in which the same
holds true at maximum, the Kähler metric is not positive definite at this point. On the other
hand, by symmetric space property the metric should be isometric with the positive define metric
at maxima so that a contradiction results.
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If this argument holds true, for given values of zero modes Kähler function has only one maxi-
mum, whose value depends on the values zero modes. Staying in the optimistic mood, one could
go on to guess that the Duistermaat-Heckman theorem generalizes and the functional integral is
simply the exponent of the Kähler function at the maximum (due to the compensation of Gaussian
and metric determinants). Even more, one could bravely guess that for configuration space spinor
fields belonging to the representations of symmetries the inner products reduces to the general-
ization of correlation functions of Gaussian free field theory. Each configuration space spinor field
would define a vertex from which lines representing the propagators defined by the contravariant
configuration space metric in isometry basis emanate.

If this optimistic line of reasoning makes sense, the definition of the p-adic configuration space
integral reduces to a purely algebraic one. What is needed is that the contravariant Kähler metric
fixed by the symmetric space-property exists and that the exponent of the maximum of the Kähler
function exists for rational values of zero modes or subset of them if finite-dimensional algebraic
extension is allowed. This would give could hopes that the U -matrix elements resulting from the
configuration space integrals would exist also in the p-adic sense.

6.4.3 Are the exponential of the Kähler function and reduced Kähler action rational
functions?

The simplest possibilities one can imagine are that the exponent e2K of Kähler function appearing
in the configuration space inner products is a rational or at most a simple algebraic function
existing in a finite-dimensional algebraic extension of p-adic numbers. One could also require that
the reduced Kähler action without the 1/4παK factor, which affects in no manner the dynamics
of the absolute minimization, is a rational function.

1. Is e2K a rational function?

The exponent of the CP2 Kähler function is a rational function of the standard complex coor-
dinates and thus rational-valued for all rational values of complex CP2 coordinates. Therefore one
is lead to ask whether this property holds true quite generally for symmetric spaces and even in the
infinite-dimensional context. If so, then the continuation of the vacuum functional to the p-adic
sectors of the configuration space would be possible in the entire configuration space. Also the
spherical harmonics of CP2 are rational functions containing square roots in normalization con-
stants. That also configuration space spinor fields could use rational functions containing square
roots as normalization constant as basic building blocks would conform with general number the-
oretical ideas as well as with the general features of harmonic oscillator wave functions.

This idea is supported by the earlier work. Various arguments for the p-adic evolution of the
Kähler coupling strength imply that the exponent of the Kähler function for CP2 type extremal is
a rational number being the product K2 = p× 2× 3× 5...× 23. In this case the Kähler coupling
strength is 1/αK = (4/π) × log(K2). αK . The general number theoretical conjectures implied
by p-adic physics and physics of cognition and intention state that this is the case. Although one
must take these arguments with a big grain of salt, the general idea might be correct. Also the
elements of the configuration space metric would be rational functions as is clear from the fact
that one can express the second derivatives of the Kähler function in terms of F = exp(K) as

∂K∂LK =
∂K∂LF

F
−
∂KF∂LF

F 2
.

2. Is reduced Kähler action a rational function?

Kähler coupling strength does not appear at all in the field equations for the extremals of the
Kähler action. Therefore one could argue that also the reduced Kähler action SR(X4(X3)) defined
as SR =

∫
JµνJµν

√
gd4x should be rational valued, when X3 corresponds to a rational point of the
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configuration space (including zero modes). On the other hand, also the exponent e2K = eSR/8παK

appearing in configuration space inner products should be rational valued for rational points of
the configuration space.

If one takes seriously the conjecture 1/αK = (4/π)× log(K2), K2 = p×
∏
q=2,3,...23 q, one one

can write the exponent of Kähler function as

eK =

[
p×

∏
q=2,3,...23

q

]SR/2π
2

.

This corresponds numerically to 1αK ' 136.5585 giving α/αK ' .9965.
The rational-valuedness for the e2K appearing in the configuration space inner products would

require a quantization of the absolute minimum of the Kähler action as integer multiples of CP2

action

SR = n× SR(CP2) = n× 2π2 , (20)

where n is integer. Needless to say, the quantization of the absolute minimum of Kähler action
as multiples of CP2 Kähler action would be quite a dramatic implication and would correspond
to the basic idea of the first days of the quantum theory about quantization of action. Probably
something like this is too much to hope for and would probably have un-physical consequences.

The milder assumption that the exponent of Kähler function has values in a finite-dimensional
algebraic extension requires that SR is rational multiple of CP2 reduced Kähler action SR(CP2) =
2π2: this would require an extension generated by a finite root of p. That CP2 action would serve
as a universal unit for the absolute minima associated with the rational valued zero modes, sounds
reasonable.

An alternative option is based on the fact that ep is always an ordinary p-adic number in Rp
so that powers of em/n for a given value of n exist always in a finite-dimensional transcendental
extension of p-adic numbers. In this case not only rational values of Kähler function but all values
which are rationally proportional to an n:th root of e would be possible. The proportionality of the
Kähler function to a power of e requires much less than the proportionality to a rational number.

One can consider also an alternative ansatz based on the requirement that Kähler function is
rational number rather than a logarithm of a power of integer K2. This requires an extension of
p-adic numbers involving some root of e and a finite number of its powers. The reduced action SR
must be rational valued using Kähler action SK(CP2) = 2π2 of CP2 type extremal as a basic unit.
In fact, not only rational values of Kähler function but all values which differ from a rational value
by a perturbation with a p-adic norm smaller than one and rationally proportional to a power of
e or even its root exist p-adically in this case if they have small enough p-adic norm. The most
general perturbation of the action is in the field defined by the extension of rationals defined by
the root of e and algebraic numbers.

Since CP2 action is rationally proportional to π2, the exponent is rational if g2
K = 4παK is also

proportional to π2. If the log(p) = q1exp(q2)/π ansatz holds true for every prime, then the earlier
ansatz 1/αK(p) = (4/π)log(K2) does not guarantee this, and 4/π must be replaced with a rational
number q ' 4/π. The presence of log(K2), K2 product of primes, is well motivated also in this
case because it gives the desired 1/π factor. The replacement is also supported by the proposal
that Kähler action can be defined as a fermionic effective action using ζ function regularization
[B4].

Since k = 137 (atomic length scale) and k = 107 (hadronic length scale) are the most important
nearest p-adic neighbors of electron, one could make a free fall into number mysticism and try the
replacement 4/π → 137/107. This would give αK = 137.3237 to be compared with α = 137.0360:
the deviation from α is .2 per cent (of course, αK need not equal to α and the evolutions of these
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couplings are quite different). Thus it seems that log(p) = q1exp(q2)/π hypothesis is supported
also by the properties of Kähler action and leads to an improved understanding of the origin of
the mystery prime k = 137.

3 .Could infinite primes appear in the p-adicization of the exponent of Kähler action?

The difficulties related to the p-adic continuation of Kähler function to an arbitrary p-adic
number field and the fact that infinities are every day life in quantum field theory bring in mind
infinite primes discussed in [E3].

Infinite primes are not divisible by any finite prime. The simplest infinite prime is of form
Π = 1 + X, X =

∏
i pi, where product is over all finite primes. The factor Y = X/(1 + X) is in

the real sense equivalent with 1. In p-adic sense it has norm 1/p for every prime. Thus one could
multiply Kähler function by Y or its positive power in order to guarantee that the continuation
to p-adic number fields exists for all primes. Of course, these states might differ physically in
p-adic sense from the states having Y = 1. Thus it would seem that the physics of cognition could
differentiate between states which are in real sense equivalent.

More general infinite primes are of form Π = nX/m+ n, such that m =
∏
i qi and n =

∏
i p
ni
i

have no common factors. The interpretation could be as a counterpart for a state of a super-
symmetric theory containing fermion in each mode labelled by qi and ni bosons labelled in modes
labelled by pi. Also positive powers of the ratio Y = X/Π, Π some infinite prime, are possible as a
multiplier of the Kähler function. In the real sense this ratio would correspond to the ratio m/n.

If this picture is correct, infinite primes would emerge naturally in the p-adicization of the
theory. Since octonionic infinite primes could correspond to the states of a super-symmetric quan-
tum field theory more or less equivalent with TGD, the presence of infinite primes could make
it possible to code the quantum physical state to the vacuum functional via coupling constant
renormalization.

One could also consider the possibility of defining functions like exp(x) and log(1+x) p-adically
by replacing x with Y x without introducing the algebraic extension. The series would converge
for all values of x also p-adically and would be in real sense equivalent with the function. This
trick would apply to a very general class of Taylor series having rational coefficients. One could
also say that p-adic physics allowing infinite primes would be very similar to real physics.

The fascination of infinite primes is that the ratios of infinite primes which are ordinary rational
numbers in the real sense could code the particle number content of a super-symmetric arithmetic
quantum field theory. For the octonic version of the theory natural in the TGD framework these
states could represent the states of a real Universe. Universe would be an algebraic hologram in
the sense that space-time points, something devoid of any structure in the standard view, could
code for the quantum states of possible Universes!

The simplest manner to realize this scenario is to consider an extension of rational numbers
by the multiplicative group of real units obtained from infinite primes and powers of X. Real
number 1 would code everything in its structure! This group is generated as products of powers
of Y (m/n) = (m/n) × [X/Π(m/n)] which is a unit in the real sense. Each Y (m/n) would define
a subgroup of units and the power of Y (m/n) would code for the number of factors of a given
integer with unit counted as a factor. This would give a hierarchy of integers with their p-adic
norms coming as powers of p with the prime factors of m and n forming an exception and being
reflected in p-adic physics of cognition, Universe would ”feel” its real or imagined state with its
every point, be it a point of space-time surface, of imbedding space, or of configuration space.

6.5 Minimal approach: p-adicize only the reduced configuration space

The most recent view about what p-adicizationmight be characterized as minimalism and would
involve geometrization of only the reduced configuration space consisting of the maxima of Kähler
function.
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6.5.1 p-Adicization at the level of space-time

The minimum amount of p-adicization correspond to the p-adicization for the maxima of the Kähler
function. The basic question is whether the equations characterizing real space-time sheet make
sense also p-adically. Suppose that TGD indeed reduces to almost topological field theory defined
by Chern-Simons action for the light-like 3-surfaces interpreted as orbits of partonic 2-surfaces
[B4, C1, C2]. If this is the case, then the starting point here would be the algebraic equations
defining light-like partonic 3-surfaces via the condition that the determinant of the induced metric
vanishes. If the coordinate functions appearing in the determinant are algebraic functions with
algebraic coefficients, p-adicization should make sense. This of course, means the assumption of
some preferred coordinates and the construction of solutions of field equations leads naturally to
such coordinates [D1].

If the corresponding 4-dimensional real space-time sheet is expressible as a hyper-quaternionic
surface of hyper-octonionic variant of the imbedding space as number-theoretic vision suggests
[E2], it might be possible to construct also the p-adic variant of the space-time sheet by algebraic
continuation in the case that the functions appearing in the definition of the space-time sheet are
algebraic.

6.5.2 p-Adicization of second quantized induced spinor fields

Induction procedure makes it possible to geometrize the concept of a classical gauge field and
also of the spinor field with internal quantum numbers. In the case of the electro-weak gauge
fields induction means the projection of the H-spinor connection to a spinor connection on the
space-time surface.

In the most recent formulation induced spinor fields appear only at the 3-dimensional light-
like partonic 3-surfaces and the solutions of the modified Dirac equation can be written explicitly
[C1, C2] as simple algebraic functions involving powers of the preferred coordinate variables very
much like various operators in conformal field theory can be expressed as Laurent series in powers
of a complex variable z with operator valued coefficients. This means that the continuation of
the second quantized induced spinor fields to various p-adic number fields is a straightforward
procedure. The second quantization of these induced spinor fields as free fields is needed to
construct configuration space geometry and anti-commutation relation between spinor fields are
fixed from the requirement that configuration space gamma matrices correspond to super-canonical
generators.

The idea about rational physics as the intersection of the physics associated with various
number fields inspires the hypothesis that induced spinor fields have only modes labelled by rational
valued quantum numbers. Quaternion conformal invariance indeed implies that zero modes are
characterized by integers. This means that same oscillator operators can define oscillator operators
are universal. Powers of the quaternionic coordinate are indeed well-define in any number field
provided the components of quaternion are rational numbers since p-adic quaternions have in this
case always inverse.

6.5.3 Should one p-adicize at the level of configuration space?

If Duistermaat-Heckman theorem [38] holds true in TGD context, one could express configuration
space functional integral in terms of exactly calculable Gaussian integrals around the maxima of
the Kähler function defining what might be called reduced configuration space CHred. The huge
super-conformal symmetries raise the hope that the rest of S-matrix elements could be deduced
using group theoretical considerations so that everything would become algebraic. If this optimistic
scenario is realized, the p-adicization of CHred might be enough to p-adicize all operations needed
to construct the p-adic variant of S-matrix.
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The optimal situation would be that S-matrix elements reduce to algebraic numbers for rational
valued incoming momenta and that p-adicization trivializes in the sense that it corresponds only
to different interpretations for the imbedding space coordinates (interpretation as real or p-adic
numbers) appearing in the equations defining the 4-surfaces. For instance, space-time coordinates
would correspond to preferred imbedding space coordinates and the remaining imbedding space
coordinates could be rational functions of the latter with algebraic coefficients. Algebraic points
in a given extension of rationals would thus be common to real and p-adic surfaces. It could also
happen that there are no or very few common algebraic points. For instance, Fermat’s theorem
says that the surface xn + yn = zn has no rational points for n > 2.

This picture is probably too simple. The intuitive expectation is that ordinary S-matrix ele-
ments are proportional to a factor which in the real case involves an integration over the arguments
of an n-point function of a conformal field theory defined at a partonic 2-surface. For p-adic-real
transitions the integration should reduce to a sum over the common rational or algebraic points
of the p-adic and real surface. Same applies to p1 → p2 type transitions.

If this picture is correct, the p-adicization of the configuration space would mean p-adicization
of CHred consisting of the maxima of the Kähler function with respect to both fiber degrees of
freedom and zero modes acting effectively as control parameters of the quantum dynamics. If
CHred is a discrete subset of CH ultrametric topology induced from finite-p p-adic norm is indeed
natural for it. ’Discrete set in CH’ need not mean a discrete set in the usual sense and the
reduced configuration space could be even finite-dimensional continuum. Finite-p p-adicization as
a cognitive model would suggest that p-adicization in given point of CHred is possible for all p-adic
primes associated with the corresponding space-time surface (maximum of Kähler function) and
represents a particular cognitive representation about CHred.

A basic technical problem is, whether the integral defining the Kähler action appearing in the
exponent of Kähler function exists p-adically. Here the hypothesis that the exponent of the Kähler
function is identifiable as a Dirac determinant of the modified Dirac operator defined at the light-
like partonic 3-surfaces [B4] suggests a solution to the problem. By restricting the generalized
eigen values of the modified Dirac operator to an appropriate algebraic extension of rationals one
could obtain an algebraic number existing both in the real and p-adic sense if the number of the
contributing eigenvalues is finite. The resulting hierarchy of algebraic extensions of Rp would
have interpretation as a cognitive hierarchy. If the maxima of Kähler function assignable to the
functional integral are such that the number of eigenvalues in a given algebraic extension is finite
this hypothesis works.

If Duistermaat-Heckman theorem generalizes, the p-adicization of the entire configuration space
would be un-necessary and it certainly does not look a good idea in the light of preceding consid-
erations.

1. For a generic 3-surface the number of the eigenvalues in a given algebraic extension of rationals
need not be finite so that their product can fail to be an algebraic number.

2. The algebraic continuation of the exponent of the Kähler function from CHred to the entire
CH would be analogous to a continuation of a rational valued function from a discrete set to
a real or p-adic valued function in a continuous set. It is difficult to see how the continuation
could be unique in the p-adic case.

6.6 The most recent vision about zero energy ontology and p-adicization

The generalization of the number concept obtained by fusing real and p-adics along rationals and
common algbraics is the basic philosophy behind p-adicization. This however requires that it is
possible to speak about rational points of the imbedding space and the basic objection against
the notion of rational points of imbedding space common to real and various p-adic variants of
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the imbedding space is the necessity to fix some special coordinates in turn implying the loss of
a manifest general coordinate invariance. The isometries of the imbedding space could save the
situation provided one can identify some special coordinate system in which isometry group reduces
to its discrete subgroup. The loss of the full isometry group could be compensated by assuming
that WCW is union over sub-WCW:s obtained by applying isometries on basic sub-WCW with
discrete subgroup of isometries.

The combination of zero energy ontology realized in terms of a hierarchy causal diamonds and
hierarchy of Planck constants providing a description of dark matter and leading to a generalization
of the notion of imbedding space suggests that it is possible to realize this dream. The article [16]
provides a brief summary about recent state of quantum TGD helping to understand the big
picture behind the following considerations.

6.6.1 Zero energy ontology briefly

1. The basic construct in the zero energy ontology is the space CD × CP2, where the causal
diamond CD is defined as an intersection of future and past directed light-cones with time-like
separation between their tips regarded as points of the underlying universal Minkowski space
M4. In zero energy ontology physical states correspond to pairs of positive and negative
energy states located at the boundaries of the future and past directed light-cones of a
particular CD. CD:s form a fractal hierarchy and one can glue smaller CD:s within larger
CD along the upper light-cone boundary along a radial light-like ray: this construction
recipe allows to understand the asymmetry between positive and negative energies and why
the arrow of experienced time corresponds to the arrow of geometric time and also why the
contents of sensory experience is located to so narrow interval of geometric time. One can
imagine evolution to occur as quantum leaps in which the size of the largest CD in the
hierarchy of personal CD:s increases in such a manner that it becomes sub-CD of a larger
CD. p-Adic length scale hypothesis follows if the values of temporal distance T between tips
of CD come in powers of 2n. All conserved quantum numbers for zero energy states have
vanishing net values. The interpretation of zero energy states in the framework of positive
energy ontology is as physical events, say scattering events with positive and negative energy
parts of the state interpreted as initial and final states of the event.

2. In the realization of the hierarchy of Planck constants CD×CP2 is replaced with a Cartesian
product of book like structures formed by almost copies of CD:s and CP2:s defined by singular
coverings and factors spaces of CD and CP2 with singularities corresponding to intersection
M2 ∩CD and homologically trivial geodesic sphere S2 of CP2 for which the induced Kähler
form vanishes. The coverings and factor spaces of CD:s are glued together along common
M2 ∩ CD. The coverings and factors spaces of CP2 are glued together along common
homologically non-trivial geodesic sphere S2. The choice of preferred M2 as subspace of
tangent space of X4 at all its points and having interpretation as space of non-physical
polarizations, brings M2 into the theory also in different manner. S2 in turn defines a
subspace of the much larger space of vacuum extremals as surfaces inside M4 × S2.

3. Configuration space (the world of classical worlds, WCW) decomposes into a union of sub-
WCW:s corresponding to different choices of M2 and S2 and also to different choices of
the quantization axes of spin and energy and and color isospin and hyper-charge for each
choice of this kind. This means breaking down of the isometries to a subgroup. This can
be compensated by the fact that the union can be taken over the different choices of this
subgroup.

4. p-Adicization requires a further breakdown to discrete subgroups of the resulting sub-groups
of the isometry groups but again a union over sub-WCW:s corresponding to different choices
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of the discrete subgroup can be assumed. Discretization relates also naturally to the notion
of number theoretic braid.

Consider now the critical questions.

1. Very naively one could think that center of mass wave functions in the union of sectors
could give rise to representations of Poincare group. This does not conform with zero energy
ontology, where energy-momentum should be assignable to say positive energy part of the
state and where these degrees of freedom are expected to be pure gauge degrees of freedom.
If zero energy ontology makes sense, then the states in the union over the various copies
corresponding to different choices of M2 and S2 would give rise to wave functions having
no dynamical meaning. This would bring in nothing new so that one could fix the gauge
by choosing preferred M2 and S2 without losing anything. This picture is favored by the
interpretation of M2 as the space of longitudinal polarizations.

2. The crucial question is whether it is really possible to speak about zero energy states for a
given sector defined by generalized imbedding space with fixed M2 and S2. Classically this
is possible and conserved quantities are well defined. In quantal situation the presence of the
light-cone boundaries breaks full Poincare invariance although the infinitesimal version of
this invariance is preserved. Note that the basic dynamical objects are 3-D light-like ”legs”
of the generalized Feynman diagrams.

6.6.2 Definition of energy in zero energy ontology

Can one then define the notion of energy for positive and negative energy parts of the state? There
are two alternative approaches depending on whether one allows or does not allow wave-functions
for the positions of tips of light-cones.

Consider first the naive option for which four momenta are assigned to the wave functions
assigned to the tips of CD:s.

1. The condition that the tips are at time-like distance does not allow separation to a product
but only following kind of wave functions

Ψ = exp[ip · (m+ −m−)]Θ(T 2)Θ(m0
+ −m0

−)Φ(p) , T 2 = (m+ −m−)2 . (21)

Here m+ and m− denote the positions of the light-cones and Θ denotes step function. Φ
denotes configuration space spinor field in internal degrees of freedom of 3-surface. One can
introduce also the decomposition into particles by introducing sub-CD:s glued to the upper
light-cone boundary of CD.

2. The first criticism is that only a local eigen state of 4-momentum operators p± = h̄∇/i is in
question everywhere except at boundaries and at the tips of the CD with exact translational
invariance broken by the two step functions having a natural classical interpretation. The
second criticism is that the quantization of the temporal distance between the tips to T =
2kT0 is in conflict with translational invariance and reduces it to a discrete scaling invariance.

The less naive approach relying of super conformal structures of quantum TGD assumes fixed
value of T and therefore allows the crucial quantization condition T = 2kT0.

1. Since light-like 3-surfaces assignable to incoming and outgoing legs of the generalized Feyn-
man diagrams are the basic objects, can hope of having enough translational invariance to
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define the notion of energy. If translations are restricted to time-like translations acting in
the direction of the future (past) then one has local translation invariance of dynamics for
classical field equations inside δM4

± as a kind of semigroup. Also the M4 translations lead-
ing to interior of X4 from the light-like 2-surfaces surfaces act as translations. Classically
these restrictions correspond to non-tachyonic momenta defining the allowed directions of
translations realizable as particle motions. These two kinds of translations have been as-
signed to super-canonical conformal symmetries at δM4

± × CP2 and and super Kac-Moody
type conformal symmetries at light-like 3-surfaces. Equivalence Principle in TGD framework
states that these two conformal symmetries define a structure completely analogous to a
coset representation of conformal algebras so that the four-momenta associated with the two
representations are identical [C1].

2. The condition selecting preferred extremals of Kähler action is induced by a global selection
of M2 as a plane belonging to the tangent space of X4 at all its points [C1]. The M4

translations of X4 as a whole in general respect the form of this condition in the interior.
Furthermore, if M4 translations are restricted to M2, also the condition itself - rather than
only its general form - is respected. This observation, the earlier experience with the p-adic
mass calculations, and also the treatment of quarks and gluons in QCD encourage to consider
the possibility that translational invariance should be restricted to M2 translations so that
mass squared, longitudinal momentum and transversal mass squared would be well defined
quantum numbers. This would be enough to realize zero energy ontology. Encouragingly,
M2 appears also in the generalization of the causal diamond to a book-like structure forced
by the realization of the hierarchy of Planck constant at the level of the imbedding space.

3. That the cm degrees of freedom for CD would be gauge like degrees of freedom sounds
strange. The paradoxical feeling disappears as one realizes that this is not the case for sub-
CD:s, which indeed can have non-trivial correlation functions with either upper or lower
tip of the CD playing a role analogous to that of an argument of n-point function in QFT
description. One can also say that largest CD in the hierarchy defines infrared cutoff.

6.6.3 p-Adic variants of the imbedding space

Consider now the construction of p-adic variants of the imbedding space.

1. Rational values of p-adic coordinates are non-negative so that light-cone proper time a4,+ =√
t2 − z2 − x2 − y2 is the unique Lorentz invariant choice for the p-adic time coordinate

near the lower tip of CD. For the upper tip the identification of a4 would be a4,− =√
(t− T )2 − z2 − x2 − y2. In the p-adic context the simultaneous existence of both square

roots would pose additional conditions on T . For 2-adic numbers T = 2nT0, n ≥ 0 (or
more generally T =

∑
k≥n0

bk2k), would allow to satisfy these conditions and this would be
one additional reason for T = 2nT0 implying p-adic length scale hypothesis. The remaining
coordinates of CD are naturally hyperbolic cosines and sines of the hyperbolic angle η±,4
and cosines and sines of the spherical coordinates θ and φ.

2. The existence of the preferred plane M2 of un-physical polarizations would suggest that the
2-D light-cone proper times a2,+ =

√
t2 − z2 a2,− =

√
(t− T )2 − z2 can be also considered.

The remaining coordinates would be naturally η±,2 and cylindrical coordinates (ρ, φ).

3. The transcendental values of a4 and a2 are literally infinite as real numbers and could be
visualized as points in infinitely distant geometric future so that the arrow of time might be
said to emerge number theoretically. For M2 option p-adic transcendental values of ρ are
infinite as real numbers so that also spatial infinity could be said to emerge p-adically.
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4. The selection of the preferred quantization axes of energy and angular momentum unique
apart from a Lorentz transformation of M2 would have purely number theoretic meaning in
both cases. One must allow a union over sub-WCW s labeled by points of SO(1, 1). This
suggests a deep connection between number theory, quantum theory, quantum measurement
theory, and even quantum theory of mathematical consciousness.

5. In the case of CP2 there are three real coordinate patches involved [Appendix]. The com-
pactness of CP2 allows to use cosines and sines of the preferred angle variable for a given
coordinate patch.

ξ1 = tan(u)exp(i
(Ψ + Φ)

2
)cos(

Θ
2

) ,

ξ2 = tan(u)exp(i
(Ψ− Φ)

2
)sin(

Θ
2

) . (22)

The ranges of the variables u,Θ,Φ,Ψ are [0, π/2], [0, π], [0, 4π], [0, 2π] respectively. Note that
u has naturally only the positive values in the allowed range. S2 corresponds to the values
Φ = Ψ = 0 of the angle coordinates.

6. The rational values of the (hyperbolic) cosine and sine correspond to Pythagorean triangles
having sides of integer length and thus satisfying m2 = n2 + r2 (m2 = n2 − r2). These
conditions are equivalent and allow the well-known explicit solution [39]. One can construct
a p-adic completion for the set of Pythagorean triangles by allowing p-adic integers which are
infinite as real integers as solutions of the conditions m2 = r2±s2. These angles correspond to
genuinely p-adic directions having no real counterpart. Hence one obtains p-adic continuum
also in the angle degrees of freedom. Algebraic extensions of the p-adic numbers bringing in
cosines and sines of the angles π/n lead to a hierarchy increasingly refined algebraic extensions
of the generalized imbedding space. Since the different sectors of WCW directly correspond
to correlates of selves this means direct correlation with the evolution of the mathematical
consciousness. Trigonometric identities allow to construct points which in the real context
correspond to sums and differences of angles.

7. Negative rational values of the cosines and sines correspond as p-adic integers to infinite
real numbers and it seems that one use several coordinate patches obtained as copies of the
octant (x ≥ 0, y ≥ 0, z ≥ 0, ). An analogous picture applies in CP2 degrees of freedom.

8. The expression of the metric tensor and spinor connection of the imbedding in the proposed
coordinates makes sense as a p-adic numbers in the algebraic extension considered. The
induction of the metric and spinor connection and curvature makes sense provided that the
gradients of coordinates with respect to the internal coordinates of the space-time surface be-
long to the extensions. The most natural choice of the space-time coordinates is as subset of
imbedding space-coordinates in a given coordinate patch. If the remaining imbedding space
coordinates can be chosen to be rational functions of these preferred coordinates with coef-
ficients in the algebraic extension of p-adic numbers considered for the preferred extremals
of Kähler action, then also the gradients satisfy this condition. This is highly non-trivial
condition on the extremals and if it works might fix completely the space of exact solutions
of field equations. Space-time surfaces are also conjectured to be hyper-quaternionic [E2],
this condition might relate to the simultaneous hyper-quaternionicity and Kähler extremal
property. Note also that this picture would provide a partial explanation for the decompo-
sition of the imbedding space to sectors dictated also by quantum measurement theory and
hierarchy of Planck constants.
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6.6.4 p-Adic variants for the sectors of WCW

One can also wonder about the most general definition of the p-adic variants of the sectors of the
world of classical worlds.

1. The restriction of the surfaces in question to be expressible in terms of rational functions with
coefficients which are rational numbers of belong to algebraic extension of rationals means
that the world of classical worlds can be regarded as a a discrete set and there would be no
difference between real and p-adic worlds of classical worlds: a rather unexpected conclusion.

2. One can of course whether one should perform completion also for WCWs. In real context
this would mean completion of the rational number valued coefficients of a rational function
to arbitrary real coefficients and perhaps also allowance of Taylor and Laurent series as limits
of rational functions. In the p-adic case the integers defining rational could be allowed to
become p-adic transcendentals infinite as real numbers. Also now also Laurent series could
be considered.

3. In this picture there would be close analogy between the structure of generalized imbedding
space and WCW . Different WCW:s could be said to intersect in the space formed by rational
functions with coefficients in algebraic extension of rationals just real and p-adic variants of
the imbedding space intersect along rational points. In the spirit of algebraic completion one
might hope that the expressions for the various physical quantities, say the value of Kähler
action, Kähler function, or at least the exponent of Kähler function (at least for the maxima
of Kähler function) could be defined by analytic continuation of their values from these sub-
WCW to various number fields. The matrix elements for p-adic-to-real phase transitions of
zero energy states interpreted as intentional actions could be calculated in the intersection
of real and p-adic WCW:s by interpreting everything as real.

6.7 Zero energy ontology, self hierarchy, and the notion of time

One manner to test the internal consistency of the picture about zero energy ontology and p-
adication is by formulating the basic notions and problems of TGD inspired quantum theory of
consciousness and quantum biology in terms of zero energy ontology.

In consciousness theory the basic challenges are to understand the asymmetry between positive
and negative energies and between two directions of geometric time at the level of conscious
experience, the correspondence between experienced and geometric time, and the emergence of the
arrow of time. One should also explain why human sensory experience is about a rather narrow
time interval of about .1 seconds and why memories are about the interior of much larger CD with
time scale of order life time. One should also have a vision about the evolution of consciousness
takes place: how quantum leaps leading to an expansion of consciousness take place.

Negative energy signals to geometric past - about which phase conjugate laser light represents
an example - provide an attractive tool to realize intentional action as a signal inducing neural ac-
tivities in the geometric past (this would explain Libet’s classical findings), a mechanism of remote
metabolism, and the mechanism of declarative memory as communications with the geometric
past. One should understand how these signals are realized in zero energy ontology and why their
occurrence is so rare.

In the following my intention is to demonstrate that TGD inspired theory of consciousness
and quantum TGD proper indeed seem to be in tune and that this process of comparison helps
considerably in the attempt to develop the TGD based ontology at the level of details.
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6.8 Causal diamonds as correlates for selves

Quantum jump as a moment of consciousness, self as a sequence of quantum jumps integrating to
self, and self hierarchy with sub-selves experienced as mental images, are the basic notions of TGD
inspired theory of consciousness. In the most ambitious vision self hierarchy reduces to a fractal
hierarchy of quantum jumps within quantum jumps.

It is natural to interpret CDs as correlates of selves. CDs can be interpreted either as subsets
of the generalized imbedding space or as sectors of WCW. Accordingly, selves correspond to CDs
of the generalized imbedding space or sectors of WCW, literally separate interacting quantum
Universes. The spiritually oriented reader might speak of Gods. Sub-selves correspond to sub-
CDs geometrically. The contents of consciousness of self is about the interior of the corresponding
CD at the level of imbedding space. For sub-selves the wave function for the position of tip of CD
brings in the delocalization of sub-WCW.

The fractal hierarchy of CDs within CDs is the geometric counterpart for the hierarchy of
selves: the quantization of the time scale of planned action and memory as T (k) = 2kT0 suggest
an interpretation for the fact that we experience octaves as equivalent in music experience.

6.9 Why sensory experience is about so short time interval?

CD picture implies automatically the 4-D character of conscious experience and memories form part
of conscious experience even at elementary particle level. Amazingly, the secondary p-adic time
scale of electron is T = 0.1 seconds defining a fundamental time scale in living matter. The problem
is to understand why the sensory experience is about a short time interval of geometric time rather
than about the entire personal CD with temporal size of order life-time. The explanation would be
that sensory input corresponds to subselves (mental images) with T ' .1 s at the upper light-like
boundary of CD in question. This requires a strong asymmetry between upper and lower light-like
boundaries of CDs.

The localization of the contents of the sensory experience to the upper light-cone boundary and
local arrow of time could emerge as a consequence of self-organization process involving conscious
intentional action. Sub-CDs would be in the interior of CD and self-organization process would
lead to a distribution of CDs concentrated near the upper or lower boundary of CD. The local
arrow of geometric time would depend on CD and even differ for CD and sub-CDs.

1. The localization of contents of sensory experience to a narrow time interval would be due to
the concentration of sub-CDs representing mental images near the either boundary of CD
representing self.

2. Phase conjugate signals identifiable as negative energy signals to geometric past are important
when the arrow of time differs from the standard one in some time scale. If the arrow of
time establishes itself as a phase transition, this kind of situations are rare. Negative energy
signals as a basic mechanism of intentional action and transfer of metabolic energy would
explain why living matter is so special.

3. Geometric memories would correspond to the regions near ”lower” boundaries of CD. Since
the density of sub-CDs is small there geometric memories would be rare and not sharp. A
temporal sequence of mental images, say the sequence of digits of a phone number, would
correspond to a temporal sequence of sub-CDs.

4. Sharing of mental images corresponds to a fusion of sub-selves/mental images to single sub-
self by quantum entanglement: the space-time correlate could be flux tubes connecting space-
time sheets associated with sub-selves represented also by space-time sheets inside their CDs.
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6.10 Arrow of time

TGD forces a new view about the relationship between experienced and geometric time. Although
the basic paradox of quantum measurement theory disappears the question about the arrow of
geometric time remains.

1. Selves correspond to CDs. The CDs and their projections to the imbedding space do not
move anywhere. Therefore the standard explanation for the arrow of geometric time cannot
work.

2. The only plausible interpretation at classical level relies on quantum classical correspondence
and the fact that space-times are 4-surfaces of the imbedding space. If quantum jump
corresponds to a shift for a quantum superposition of space-time sheets towards geometric
past in the first approximation (as quantum classical correspondence suggests), one can
understand the arrow of time. Space-time surfaces simply shift backwards with respect to
the geometric time of the imbedding space and therefore to the 8-D perceptive field defined
by the CD. This creates in the materialistic mind a temporal variant of train illusion. Space-
time as 4-surface and macroscopic and macro-temporal quantum coherence are absolutely
essential for this interpretation to make sense.

Why this shifting should always take place to the direction of geometric past of the imbedding
space? Does it so always? The proposed mechanism for the localization of sensory experience to
a short time interval suggests an explanation in terms of intentional action.

1. CD defines the perceptive field for self. Selves are curious about the space-time sheets outside
their perceptive field and perform quantum jumps tending to shift the superposition of the
space-time sheets so that unknown regions of space-time sheets emerge to the perceptive
field. Either the upper or lower boundary of CD wins in the competition and the arrow of
time results as a spontaneous symmetry breaking. The arrow of time can depend on CD but
tends to be the same for CD and its sub-CDs. Global arrow of time could establish itself by
a phase transitions establishing the same arrow of time globally by a mechanism analogous
to percolation phase transition.

2. Since the news come from the upper boundary of CD, self concentrates its attention to this
region and improves the resolution of sensory experience. The sub-CDs generated in this
manner correspond to mental images with contents about this region. Hence the contents of
conscious experience, in particular sensory experience, tends to be about the region near the
upper boundary.

6.11 Can selves interact and evolve?

Interesting questions relate to how dynamical selves are.

1. Is self doomed to live inside the same sub-WCW eternally as a lonely god? This question has
been already answered: there are interactions between sub-CDs of given CD, and one can
think of selves as quantum superposition of states in CDs with wave function having as its
argument the tips of CD, or rather only the second one since T is assumed to be quantized.

2. Is there largest CD in the personal CD hierarchy of self in an absolute sense? Or is the
largest CD present only in the sense that the contribution to the contents of consciousness
coming from very large CDs is negligible? Long time scales T correspond to low frequencies
and thermal noise might mask these contributions. Here however the hierarchy of Planck
constants and generalization of the imbedding space could come in rescue by allowing dark
EEG photons to have energies above thermal energy.
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3. Can selves evolve in the sense that the size of CD increases in quantum leaps so that the
corresponding time scale T = 2kT0 of memory and planned action increases? Geometrically
this kind of leap would mean that CD becomes a sub-CD of a larger CD - either at the level
of conscious experience or in absolute sense. The leap can occur in two senses: as an increase
of the largest p-adic time scale in the personal hierarchy of space-time sheets or as increase
of the largest value of Planck constants in the personal dark matter hierarchy. At the level
of individual organism this would mean emergence of new lower frequencies of generalized
EEG and levels of personal dark matter hierarchy with larger value of Planck constant.

7 Appendix: Basic facts about algebraic numbers, quater-
nions and octonions

To understand the detailed connection between infinite primes, polynomial primes and Fock states,
some basic concepts of algebraic number theory related to the generalization of prime and prime
factorization [18, 25, 23] (the first reference is warmly recommended for a physicist because it
teaches the basic facts through exercises; also second book is highly enjoyable reading because of
its non-Bourbakian style of representation).

7.1 Generalizing the notion of prime

Algebraic numbers are defined as roots of polynomial equations with rational coefficients. Algebraic
integers are identified as roots of monic polynomials (highest coefficient equals to one) with integer
coefficients. Algebraic number fields correspond to algebraic extensions of rationals and can have
any dimension as linear spaces over rationals. The notion of prime is extremely general and involves
rather actract mathematics in general case.

Quite generally, commutative ring R called integral domain, if the product ab vanishes only
if a or b vanishes. To a given integral domain one can assign a number field by essentially the
same construction by which one assigns the field of rationals to ordinary integers. The integer
valued function a → N(a) in R is called norm if it has the properties N(ab) = N(a)N(b) and
N(1) = 1. For instance, for the algebraic extension Q(

√
−D) of rationals consisting of points

z = r +
√
−Ds, the function N(z) = r2 + Ds2 defines norm. More generally, the determinant of

the linear map defined by the action of z in algebraic number field defines norm function. This
determinant reduces to the product of all conjugates of z in K and is n:th order polynomial with
respect to the components of z when K is n-dimensional.

Irreducible elements (almost the counterparts of primes) can be defined as elements P of integral
domain having the property that if one has P = bc, then either b or c has unit norm. Elements
with unit norm are called units and elements differing by a multiplication with unit are called
associates. Note that in the case of p-adics all p-adic numbers with unit norm are units.

7.2 UFDs, PIDs and EDs

If the elements of R allow a unique factorization to irreducible elements, R is said to be unique
factorization domain (UFD). Ordinary integers are obviously UFD. The field Z(

√
−5) is not UFD:

for instance, one has 6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5). The fact that prime factorization is not

unique forces to generalize the notion of primeness such that ideals in the ring of algebraic integers
take the role of integers. The counterparts of primes can be identified as irreducible elements,
which generate prime ideals containing one and only one rational prime. Irreducible elements,
such as 1±

√
−5 in Z(

√
−5), are not primes in this sense.
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Principal ideal domain (PID) is defined as an integral domain for which all ideals are principal,
that is are generated as powers of single element. In the case of ordinary integers powers of integers
define PID.

Euclidian domain (ED) is integral domain with the property that for any pair a and b one
can find pair (q, r) such that a = bq + r with N(r) < N(a). This guarantees that the Euclidian
algorithm used in the division of rationals converges. Integers form an Euclidian domain but
polynomials with integer coefficients do not (elements 2 and x do not allow decomposition 2 =
q(x)x + r). It can be shown that EDs are PIDs in turn are UFDs. For instance, for complex
quadratic extensions of integers Z(

√
−d) there are only 9 UFDs and they correspond to d =

1, 2, 3, 7, 11, 19, 43, 67, 163. For extensions of type Z(
√
d) the number of UFD:s is infinite. There

are not too many quadratic extensions which are ED:s and the possible values of d are d =
−1,±2,±3, 5, 6,±7,±11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

Any algebraic number field K is representable always as a polynomial ring Q[θ] obtained from
the polynomial ring Q[x] by replacing x with an algebraic number θ, which is a root of an irreducible
polynomial with rational coefficients. This field has dimension n over rationals, where n is the
degree of the polynomial in question.

7.3 The notion of prime ideal

As already noticed, a general algebraic number field K does not allow a unique factorization into
irreducibles and one must generalize the notion of prime number and integer in order to achieve a
unique factorization. The ideals of the ring OK of algebraic integers in K take the role of integers
whereas prime ideals take the role of primes. The factorization of an ideal to a product of prime
ideals is unique and each prime ideal contains single rational prime characterizing it. One can
assign to an ideal norm which orders the ideals: N(a) < N(b) ↔ b ⊂ a. The smaller the integer
generating ideal, the larger the ideal is and the ideals generated by primes are maximal ones in
PID. The equivalence classes of the ideals of OK under equivalence defined by integer multiplication
form a group. The number of classes is a characteristic of an algebraic number field. For class-
one algebraic number fields prime factorization of ideals is equivalent with the factorization to
irreducibles in K. Z(

√
−5), which is not UFD, allows two classes of prime ideals. Cyclotomic

number fields Q(ζm), where ζm is m:th root of unity have class number one for 3 ≤ m ≤ 10. In
particular, the four-dimensional algebraic number fields Q(ζ8) and Q(ζ5) = Q(ζ10) are ED and
thus UFD.

7.3.1 Basic facts about primality for polynomial rings

The notion of primality can be abstracted to the level of polynomial algebras in field K and these
polynomial algebras seem to be more or less identical with the algebra formed by infinite integers.
The following two results are crucial for the argument demonstrating that this is indeed the case.

7.3.2 Polynomial ring associated with any number field is UFD

The elements in the ring K[x1, ..., xn] formed by the polynomials having coefficients in any field
K and xi having values in K, allow a unique decomposition into prime factors. This means that
things are much simpler at the next abstraction level, since there is no need for refined class theories
needed in the case of algebraic number fields.

The number field K appearing as a coefficient field of polynomials could correspond to finite
fields (Galois fields), rationals, any algebraic number field obtained as an extension of rational,
p-adic numbers, reals or complex numbers. For Q[x], where Q denotes rationals, the simplest
prime factors are monomials of form x − q, q rational number. More complicated prime factors
correspond to minimal polynomials having algebraic number α and its conjugates as their roots.
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In the case of complex number field only monomomials x − z, z complex number are the only
prime polynomials. Clearly, the primes at the higher level of abstraction are generalized rationals
of previous level plus numbers which are algebraic with respect to the generalized rationals.

7.3.3 The polynomial rings associated with any UFD are UFD

If R is a unique factorization domain (UFD), then also R[x] is UFD: this holds also for R[x1, ..., xn].
Hence one obtains an infinite hierarchy of UFDs by a repeated abstraction process by starting from
a given algebraic number field K. At the first step one obtains the ring K[x] of polynomials in
K. At the next step one obtains the ring of polynomials K2)[y] having as coefficient ring the ring
K[x] ≡ K1)[x] of polynomials. At the next step one obtains K2)[z], etc.. Note that OK [x] is not
ED in general and need not be UFD neither unless OK is UFD. OK [x] is not however interesting
from the viewpoint of TGD.

An element of K2)(y) corresponds to a polynomial P (y, x) of y such that its coefficients are
K-rational functions of x. A polynomial in K3)(z) corresponds to a polynomial of P (z, y, z) such
that the coefficients of z are K-rational functions of functions of y with coefficients which are K-
rational functions of z. Note that as a special case, polynomials of all n variables result. Note
also the hierarchical ordering of the variables. Thus the hierarchy of polynomials gives rise to a
hierarchy of functions having increasingly number of independent variables.

7.4 Examples of two-dimensional algebraic number fields

The general two-dimensional (in algebraic sense) algebraic extension of rationals corresponds to
K(θ), where θ = (−b ±

√
b2 − 4c)/2 is root of second order irreducible polynomial x2 + bx + c.

Depending on whether the discriminant D = b2 − 4c is positive or negative, one obtains real and
complex extensions. θ and its conjugate generate equivalent extensions and all extensions can be
obtained as extensions of form Q(

√
±d).

For Q(
√
d), d square-free integer, units correspond to powers of x = ±(pn−1 + qn−1

√
d), where

n defines the period of the continued fraction expansion of
√
d and pk/qk defines k:th convergent

in the continued fraction expansion. For Q(
√
−d), d > 1 units form group Z2. For d = 1 the group

is Z2
2 and for Q(w) where w = −1/2 +

√
3/2 is the third root of unity (w3 = 1), this group is

Z2 × Z3 (note that in this case the minimal polynomial is (x3 − 1)/(x− 1).
Z(w) and Z(i) are exceptional in the sense that the group of the roots of unity is exceptionally

large. Z(i) and Z(w) allow a unique factorization of their elements into products of irreducibles.
The primes π of Z(w) consist of rational primes p, p mod 4 = 3 and complex Gaussian primes
satisfying N(π) = ππ = p, p mod 4 = 1. Squares of the Gaussian primes generate as their product
complex numbers giving rise to Pythagorean phases. The primes π of Z(w) consist of rational
primes p, p mod 3 = 2 and complex Eisenstein primes satisfing N(π) = ππ = p, p mod 3 = 1.

7.5 Cyclotomic number fields as examples of four-dimensional algebraic
number fields

By the ’theorem of primitive element’ all algebraic number fields are obtained by replacing the
polynomial algebra Q[x], by Q[θ], where θ is a root of an irreducible minimal polynomial which
is of fourth order. One can readily calculate the extensions associated with a given irreducible
polynomial by using quadratures for 4:th order polynomials. These polynomials are of general
form P4(x) = x4 + a3x

3 + a2x
2 + a1x + a0 and by a substitution x = y − a3/4) which does not

change the nature of algbebraic number field, they can be reduced to a canonical form P4(x) =
x4 +a2x

2 +a1x+a0. Thus a very rough view is that three rationals parametrize the 4-dimensional
algebraic number fields.
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A second manner to represent extensions is in form K(θ1, θ, ..) such that the units θi have no
common factors different from one. In this case the dimension of the extension is 2n, where n is
the number of units. Examples of four-dimensional extensions are the algebraic extensions
Q(
√
±d1,

√
±d2) of rationals, where di are square-free integers, reduce to form Q(θ). The cyclic

extension of rationals by the powers of the m:th root of unity with m = 5, 8, 12 are four-dimensional
extensions called cyclotomic number fields. Also the extensions Q((±)d)1/4) are simple four-
dimensional extensions. These extensions allow completion to a corresponding p-adic algebraic
extension for some p-adic primes.

Quite generally, cyclotomic number fields Q(ζm) are obtained from polynomial algebra Q[x]
by replacing x with the m:th primitive root of unity denoted by ζm and thus satisfying ζmm = 1.
There are three cyclic extensions of dimension 4 and they correspond to Q(ζ5) = Q(ζ10), Q(ζ8)
and Q(ζ12). Cyclotomic extensions are higly symmetric since the roots of unity act as symmetries
of the norm.

The units of cyclotomic field Q(ζm) form group Z2 × Zm × Z. Z corresponds to the powers
of units for Q(ζm + 1/ζm). These powers have unit norm only with respect to the norm of Q(ζm)
whereas with respect to the ordinary complex norm they correspond to fractal scalings. What
looks fractal obtained by repeated scalings of the same structure with respect to the real norm
looks like a lattice when algebraic norm is used.

1. Q(ζ8)

The cyclotomic number field Q(ζ8), ζ8 = exp(iπ/4) satisfying ζ8
8 = 1, consists of numbers of

form k = m + in +
√
i(r + is). All roots (±i1/2 and ±i3/2) are complex. The group of units is

Z4
2 × Z. Z corresponds in real topology to the fractal scalings generated by L = 1 +

√
2. The

integer multiples of log(L) could be interpreted as a quantized momentum. Q(ζ8) can be generated
by ±ζ8 and ±iζ8. This means additional Z2

2 Galois symmetry which does not define multiplicative
quantum number.

2. Q(ζ12)

The extension Q(
√
−1, w), w = ζ3, can be regarded as a cyclic extension Q(iw) = Q(ζ12) as

is clear from the fact that the six lowest powers of iw come as iw,−w2,−i, w = −1 − w2, iw2 =
−iw − i,−1. Z(iw) is especially interesting because it contains Q(i) and Q(w) for which primes
correspond to Gaussian and Eisenstein primes. A unique factorization to a product of irreducibles
is possible only for Q(ζm) m ≤ 10: thus the algebraic integers in Z(iw) do not always allow
a unique decomposition into irreducibles. The most obvious candidates for primes not allowing
unique factorization are primes satisfying simultaneously the conditions p mod 4 = 3 = 1 implying
decomposition into a product of Gaussian prime and its conjugate and p mod 3 = 1 guaranteing
the decomposition into a product of Eisestein prime and its conjugate.

The group of units reduces to Z2
2 × Z3 × Z might have something to do with the group of

discrete quantum numbers C,P and SU(3) triality telling the number of quarks modulo 3 in the
state. For the extensions Q(

√
−1,
√
d) the roots of unity form the group Z2

2 : these extensions could
correspond to gauge bosons and the quantum numbers would correspond to C and P . For real
extensions the group of the roots of unity reduces to Z2: in this case the interpretation inters of
parity suggests itself.

The lattice defined by Z corresponds to the scalings by powers of
√

3 + 2. It could be also
interpreted also as the lattice of longitudinal momenta for hadronic quarks which move collinearly
inside space-time sheet which might be identified as a massless extremal (ME) for which longitu-
dinal direction is a preferred spatial direction.

Q(ζ12) can be generated by ±iw,±iw2 and the replacement of iw with these alternatives
generates Z2

2 symmetry not realizable as a multiplication with units.

3. Q(ζ5) and biology
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Q(ζ5) indeed gives 4-dimensional extension of rationals since one has 1+ζ5 + ...ζ4
5 = 0 implying

that ζ4
5 = 1/ζ5 is expressible as rational combination of other units. Both Q(ζ5) and Q(ζ8)

allows a unique decomposition of rational integers into prime factors. The primes in Q(ζ5) allow
decomposition to a product of r = 1, 2 or 4 primes of Q(ζ5) [25]. The value of r for a given p is fixed
by the requirement that f = 4/r is the smallest natural number for which pf − 1 mod p = 0 holds
true. For instance, p = 2, 3 correspond to f = 4 and are primes of Q(ζ5), p = 11 has decomposition
into a product of four primes of Q(ζ5), and p = 19 has decomposition into two primes of Q(ζ5)).

What makes this extension interesting is that the phase angle associated with ζ5 corresponds
to the angle of 72 degrees closely related with Golden Mean τ = (1+

√
5)/2 satisfying the equation

τ2 − τ − 1 = 0. The phase of the fifth root is given by ζ5 = (τ − 1 + i
√

2 + τ)2. The group of
units is Z2 × Z5 × Z. Z corresponds to the factal scalings by τ = (1 +

√
5)/2. The conjugations

ζ5 → ζk5 , k = 1, 2, 3, 4 leave the norm invariant and generate group Z5
2 .

Fractal scalings by Golden Mean and the closely related Fibonacci numbers are closely related
with the fractal structures associated with living systems (botany is full of logarithmic spirals
involving Golden Mean and the phase angle 36 is involved even with DNA). It has been suggested
that Golden Mean might be even a fundamental constant of physics [29]. Of course, the very fact
that Golden Mean emerges in biological length scales provides strongest evidence for its dynamical
origin in algebraic framework.

Q(ζ5) cannot be realized as an algebraic extensionK(θ, i) naturally associated with the transver-
sal part of quaternionic primes but can appear only as a subfield of the 8-dimensional extension
K(i, cos(2π/5), sin(2π/5) containing also 20:th root of unity as ζ20 = iζ5. In [E9] it is indeed found
that Golden Mean plays a fundamental role in topological quantum computation and is indeed a
fundamental constant in TGD Universe.

7.5.1 Fractal scalings

By Dirichlet’s unit theorem the group of units quite generally reduces to Zm × Zr, where Zm is
cyclic group of roots of unity and Zr can be regarded as an r-dimensional lattice with latticed
units determined by the extension. For real extensions Zm reduces to Z2 since the only real roots
of unity are {±1}. All components of four-momentum represented by a quaternionic prime can be
multiplied by separate real units of Q(θ). For a given quaternionic prime, one can always factor
out the common factor of the units of Q(θ) or Q(θ, i).

The units generate nontrivial transformations at the level of single quaternionic prime. If
the dimension of the real extension is n, the transformations form an n − 1-dimensional lattice
of scalings. Alternative but less plausible interpretation is that the logarithms of the scalings
represent n − 1-dimensional momentum lattice. Particle would be like a part of an algebraic
hologram carrying information about external world in accordance with the ideas about fractality.
Of course, units represent fractal scalings only with respect to ordinary real norm, with respect to
number theoretical norm they act like phase factors.

For instance, in the case of Q(
√

5) the units correspond to scalings by powers of Golden Mean
τ = (1 +

√
5)/2 having number theoretic norm equal to one. Bio-systems are indeed full of fractals

with scaling symmetry. For K = Q(
√

3) the scalings correspond to powers of L = 2 +
√

3. An
interesting possibility is that hadron physics might reveal fractality in powers of L. More generally,
for Q(

√
d), d square-free integer, the basic fractal scaling is L = pn−1 + qn−1

√
d, where n defines

the period of the continued fraction expansion of
√
d and pk/qk defines k:th convergent in the

continued fraction expansion.
Four-dimensional algebraic extensions are very interesting for several reasons. First, algebraic

dimension four is a borderline in complexity in the sense that for higher-dimensional irreducible
algebraic extensions there is no general quadratures analogous to the formulas associated with
second order polynomials giving the roots of the polynomial. Secondly, in transversal degrees of
freedom the minimal dimension for K(θ, i) is four. The units of K which are algebraic integers
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having a unit norm in K. Quite generally, the group of units is a product Z2k ×Zr of two groups.
Z2k = Z2 × Zk is the cyclic group generated by k:th root of unity. For real extensions one has
k = 1. In transversal degrees of freedom one can have k > 1 since extension is Q(θ, i). The roots
of unity possible in four-dimensional case correspond to k = 2, 4, 6, 8, 10, 12. Corresponding cyclic
groups are products of Zi2, Z3 and Z5. Z2, Z2 and Z3 and act as symmetries of the root lattices
of Cartan algebras.

Z3 gives rise to the Cartan algebra of SU(3) and an interesting question is whether color
symmetry is generated dynamically or whether it can be regarded as a basic symmetry with the
lattice of integer quaternions providing scaled-up version for the root lattice of color group. Note
that in TGD quark color is not spin like quantum number but corresponds to CP2 partial waves
for quark like spinors.

7.5.2 Permutations of the real roots of the minimal polynomial of θ

The replacements of the primitive element θ of K(θ) with a new one obtained by acting in it with
the elements of Galois group of the minimal polynomial of θ generate different internal states of
number theoretic fermions and bosons. The subgroup G1 of Galois group permuting the real roots
of the minimal polynomial with each other acts also as a symmetry. The number of equivalent
primitive elements is n1 = n−2r1, where r2 is the number of complex root pairs. For instance, for
2-dimensional extensions these symmetries permute the real roots of a second order polynomial
irreducible in the set of rationals. Since the entire polynomial has rational coefficients, kind of G1-
confinement is realized. One could say that kind of algebraically confined n-color is in question.

7.6 Quaternionic primes

Primeness makes sense for quaternions and octonions. The following considerations are however
restricted to quaternionic primes but can be easily generalized to the octonionic case. Quaternionic
primes have Euclidian norm squared equal to a rational prime. The number N(p) of primes
associated with a given rational p depends on p and each p allows at least two primes. Quaternionic
primes correspond to points of 3-sphere with prime-valued radius squared. Prime-valued radius
squared is consistent with p-adic length scale hypothesis, and one can indeed reduce p-adic length
scale hypothesis to the assumption that the Euclidian region associated with CP2 type extremal
has prime-valued radius squared.

It is interesting to count the number of quaternionic primes with same prime valued length
squared.

1. In the case of algebraic extensions the first definition of quaternionic norm is by using number
theoretic norm either for entire quaternion squared or for each component of quaternion
separately. The construction of infinite primes suggests that the first definition is more
appropriate. Both definitions of norm are natural for four-momentum squared since they give
integer valued mass squared spectrum associated with super-conformally invariant systems.
One could also decompose quaternion to two parts as q = (q0 + Iq1) +J(q2 + Iq3) and define
number theoretic norm with respect to the algebraic extension Q(θ, I).

2. Quaternionic primes with the same norm are related by SO(4) rotation plus a change of sign
of the real component of quaternion. The components of integer quaternion are analogous
to components of four-momentum.

3. There are 24 quaternionic ±Ei and multiplication by these units defines symmetries. Non-
commutativity of the quaternionic multiplication makes the interpretation of units as parity
like quantum numbers somewhat problematic since the net parity associated with a product
of primes representing physical particles associated with the infinite primes depends on the
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order of quaternionic primes. For real algebraic extensions K = Q(θ) there is also the units
defining a ’momentum’ lattice with dimension n − 1, where n is the degree of the minimal
polynomial P (θ).

4. Quaternionic primes cannot be real so that a given quaternionic prime with k ≥ 2 components
has 2k conjugates obtained by changing the signs of the components of quaternion. Basic
conjugation changes the signs of imagy components of quaternion. This corresponds to group
Zk2 ⊂ Z4

2 , 2 ≤ k ≤ 4.

5. The group S4 of 4! = 24 permutations of four objects preserves the norm of a prime quater-
nion: these permutations are representable as a multiplication with non-prime quaternion
and thus identifiable as subgroup of SO(4) and also as a subgroup of SO(3) (invariance group
of tedrahedron). In degenerate cases (say when some components of q are identical), some
subgroup of S4 leaves quaternionic prime invariant and the rotational degeneracy reduces
from D = 24 to some smaller number which is some factor of 24 and equals to 4, 6 or 12
as is easy to see. There are 16 quaternionic conjugations corresponding to change of sign
of any quaternion unit but all these conjugations are obtained from single quaternionic con-
jugation changing the sign of the imaginary part of quaternion by combining them with a
multiplication with unit and its inverse. Thus the restricted group of symmetries is S4×Z2.

6. It is possible to find for every prime p at least two quaternionic ( primes with norm squared
equal to p. For a given prime p there are in general several quaternionic primes not obtainable
from each other by transformations of S4. There must exist some discrete subgroup of SO(4)
relating these quaternionic primes to each other.

7. The maximal number of quaternionic primes generated by S4×Z2 is 24×2. In noncommuta-
tive situation it is not clear whether units can be regarded as parity type quantum numbers.
In any case, one can divide the entire group with Z4

2 to obtain Z3. This group corresponds
to cyclic permutations of imaginary quaternion units.

D = 24 is the number of physical dimensions in bosonic string model. In TGD framework a
possible interpretation is based on the observation that infinite primes constructed from rational
primes the product of all primes contains the first power of each prime having interpretation as
a representation for a single filled state of the fermionic sea. In the case of quaternions the Fock
vacuum defined as a product of all quaternionic primes gives rise to a vacuum state

X =
∏
p

pN(p)/2 ,

since each prime and its quaternionic conjugate contribute one power of p.

7.7 Imbedding space metric and vielbein must involve only rational
functions

Algebraization requires that imbedding space exists in the algebraic sense containing only points for
which preferred coordinate variables have values in some algebraic extension of rationals. Imbed-
ding space metric at the algebraic level can be defined as a quadratic form without any reference
to metric concepts like line element or distance. The metric tensors of both M4

+ and CP2 are
indeed represented by algebraic functions in the preferred coordinates dictated by the symmetries
of these spaces.

One should also construct spinor structure and this requires the introduction of an algebraic
extension containing square roots since vielbein vectors appearing in the definition of the gamma
matrices involve square roots of the components of the metric. In CP2 degrees of freedom this
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forces the introduction of square root function, and thus all square roots, unless one restricts the
values of the radial CP2 coordinate appearing in the vielbein in such a manner that rationals
result. What is interesting is that all components of spinor curvature and Kähler form of CP2 are
quadratic with respect to vierbein and algebraic functions of CP2 complex coordinates. Also the
square root of the determinant of the induce metric appears only as a multiplicative factor in the
Euler-Lagrange equations so that one can get rid of the square roots.

Induced spinor structure and Dirac equation relies on the notion of the induced gamma matrices
and here the projections of the vierbein of CP2 containing square roots are unavoidable. In complex
coordinates the components of CP2 vielbein in complex coordinates ξ1, ξ2, in which the action of
U(2) is linear holomorphic transformation, involve the square roots r =

√
|ξ|2 + |ξ2|2 and

√
1 + r2

(for detailed formulas see Appendix at the end of the book). If one has r = m/n, the requirement
that

√
1 + r2 is rational, implies m2 + n2 = k2 so that (m,n) defines Pythagorean square. Thus

induced Dirac equation is rationalized if the allowed values of r correspond to Pythagorean phases.
The notion of the phase preserving canonical identification [E6], crucial for the earlier formulation
of TGD, is consistent with this assumption. The metric of S2 = CP1 is a simplified example of
what happens. One can write the metric as gzz̄=r2 = 1

1+r2 and vielbein component is proportional
to 1/

√
1 + r2, this exists for r = m/n as rational number if one has m2 + n2 = k2, which indeed

defines Pythagorean triangle.
The restriction of the phases associated with the CP2 coordinates to Pythagorean ones has

deeper coordinate-invariant meaning. Rational CP2 can be defined as a coset space SUQ(3)/UQ(2)
of rational groups SUQ(3) and UQ(2): rationality is required in the linear matrix representation
of these groups.
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